A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem

This paper examines the application of neural networks as a construction heuristic for the examination timetabling problem. Building on the heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural network allows a novel dynamic, multi-criteria approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Corr, P. H., McCollum, B., McGreevy, M. A. J., McMullan, P.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue
container_start_page 392
container_title
container_volume
creator Corr, P. H.
McCollum, B.
McGreevy, M. A. J.
McMullan, P.
description This paper examines the application of neural networks as a construction heuristic for the examination timetabling problem. Building on the heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural network allows a novel dynamic, multi-criteria approach to be developed. The difficulty of each event to be scheduled is assessed on several characteristics, removing the dependence of an ordering based on a single heuristic. Furthermore, this technique allows the ordering to be reviewed and modified as each event is scheduled; a necessary step since the timetable and constraints are altered as events are placed. Our approach uses a Kohonen self organising neural network and is shown to have wide applicability. Results are presented for a range of examination timetabling problems using standard benchmark datasets.
doi_str_mv 10.1007/11844297_40
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19687219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19687219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-2c50a9b0e5d2c149ea3c4d9552c9ecd749afc97d280c4b801557ab014aa5d8d23</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1Loi2d-ANZGBgC16_aHktVHlIFDGVgim4cp5jmUdmpCv-eQEFiODrD9-kMh5BzClcUQF1TqoVgRmUCDsiQSwFcG0PpIRnQCaUp58IckbFR-o8BPyYD4MBSowQ_JcMY3wGAKcMG5HWaPLpdn23Aqq9u14Z1coPRFcmsbWIXtrbzbZPc94aPnbdJ2Yake3PJ_ANr3-APXfradZhXvlklz6HNK1efkZMSq-jGvz0iL7fz5ew-XTzdPcymi9Qyo7uUWQlocnCyYJYK45BbURgpmTXOFkoYLK1RBdNgRa6BSqkwByoQZaELxkfkYr-7wWixKgM21sdsE3yN4TOjZqIVo6b3Lvde7FGzciHL23YdMwrZ97HZv2P5F8b-ZgY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem</title><source>Springer Books</source><creator>Corr, P. H. ; McCollum, B. ; McGreevy, M. A. J. ; McMullan, P.</creator><contributor>Yao, Xin ; Whitley, L. Darrell ; Merelo-Guervós, Juan J. ; Runarsson, Thomas Philip ; Burke, Edmund ; Beyer, Hans-Georg</contributor><creatorcontrib>Corr, P. H. ; McCollum, B. ; McGreevy, M. A. J. ; McMullan, P. ; Yao, Xin ; Whitley, L. Darrell ; Merelo-Guervós, Juan J. ; Runarsson, Thomas Philip ; Burke, Edmund ; Beyer, Hans-Georg</creatorcontrib><description>This paper examines the application of neural networks as a construction heuristic for the examination timetabling problem. Building on the heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural network allows a novel dynamic, multi-criteria approach to be developed. The difficulty of each event to be scheduled is assessed on several characteristics, removing the dependence of an ordering based on a single heuristic. Furthermore, this technique allows the ordering to be reviewed and modified as each event is scheduled; a necessary step since the timetable and constraints are altered as events are placed. Our approach uses a Kohonen self organising neural network and is shown to have wide applicability. Results are presented for a range of examination timetabling problems using standard benchmark datasets.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540389903</identifier><identifier>ISBN: 3540389903</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540389911</identifier><identifier>EISBN: 9783540389910</identifier><identifier>DOI: 10.1007/11844297_40</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Scheduling, sequencing ; Software ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.392-401</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-2c50a9b0e5d2c149ea3c4d9552c9ecd749afc97d280c4b801557ab014aa5d8d23</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11844297_40$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11844297_40$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19687219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yao, Xin</contributor><contributor>Whitley, L. Darrell</contributor><contributor>Merelo-Guervós, Juan J.</contributor><contributor>Runarsson, Thomas Philip</contributor><contributor>Burke, Edmund</contributor><contributor>Beyer, Hans-Georg</contributor><creatorcontrib>Corr, P. H.</creatorcontrib><creatorcontrib>McCollum, B.</creatorcontrib><creatorcontrib>McGreevy, M. A. J.</creatorcontrib><creatorcontrib>McMullan, P.</creatorcontrib><title>A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem</title><title>Lecture notes in computer science</title><description>This paper examines the application of neural networks as a construction heuristic for the examination timetabling problem. Building on the heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural network allows a novel dynamic, multi-criteria approach to be developed. The difficulty of each event to be scheduled is assessed on several characteristics, removing the dependence of an ordering based on a single heuristic. Furthermore, this technique allows the ordering to be reviewed and modified as each event is scheduled; a necessary step since the timetable and constraints are altered as events are placed. Our approach uses a Kohonen self organising neural network and is shown to have wide applicability. Results are presented for a range of examination timetabling problems using standard benchmark datasets.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Scheduling, sequencing</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540389903</isbn><isbn>3540389903</isbn><isbn>3540389911</isbn><isbn>9783540389910</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAUhc1Loi2d-ANZGBgC16_aHktVHlIFDGVgim4cp5jmUdmpCv-eQEFiODrD9-kMh5BzClcUQF1TqoVgRmUCDsiQSwFcG0PpIRnQCaUp58IckbFR-o8BPyYD4MBSowQ_JcMY3wGAKcMG5HWaPLpdn23Aqq9u14Z1coPRFcmsbWIXtrbzbZPc94aPnbdJ2Yake3PJ_ANr3-APXfradZhXvlklz6HNK1efkZMSq-jGvz0iL7fz5ew-XTzdPcymi9Qyo7uUWQlocnCyYJYK45BbURgpmTXOFkoYLK1RBdNgRa6BSqkwByoQZaELxkfkYr-7wWixKgM21sdsE3yN4TOjZqIVo6b3Lvde7FGzciHL23YdMwrZ97HZv2P5F8b-ZgY</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Corr, P. H.</creator><creator>McCollum, B.</creator><creator>McGreevy, M. A. J.</creator><creator>McMullan, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem</title><author>Corr, P. H. ; McCollum, B. ; McGreevy, M. A. J. ; McMullan, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-2c50a9b0e5d2c149ea3c4d9552c9ecd749afc97d280c4b801557ab014aa5d8d23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Scheduling, sequencing</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corr, P. H.</creatorcontrib><creatorcontrib>McCollum, B.</creatorcontrib><creatorcontrib>McGreevy, M. A. J.</creatorcontrib><creatorcontrib>McMullan, P.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corr, P. H.</au><au>McCollum, B.</au><au>McGreevy, M. A. J.</au><au>McMullan, P.</au><au>Yao, Xin</au><au>Whitley, L. Darrell</au><au>Merelo-Guervós, Juan J.</au><au>Runarsson, Thomas Philip</au><au>Burke, Edmund</au><au>Beyer, Hans-Georg</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>392</spage><epage>401</epage><pages>392-401</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540389903</isbn><isbn>3540389903</isbn><eisbn>3540389911</eisbn><eisbn>9783540389910</eisbn><abstract>This paper examines the application of neural networks as a construction heuristic for the examination timetabling problem. Building on the heuristic ordering technique, where events are ordered by decreasing scheduling difficulty, the neural network allows a novel dynamic, multi-criteria approach to be developed. The difficulty of each event to be scheduled is assessed on several characteristics, removing the dependence of an ordering based on a single heuristic. Furthermore, this technique allows the ordering to be reviewed and modified as each event is scheduled; a necessary step since the timetable and constraints are altered as events are placed. Our approach uses a Kohonen self organising neural network and is shown to have wide applicability. Results are presented for a range of examination timetabling problems using standard benchmark datasets.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11844297_40</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.392-401
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19687219
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Operational research and scientific management
Operational research. Management science
Scheduling, sequencing
Software
Theoretical computing
title A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20New%20Neural%20Network%20Based%20Construction%20Heuristic%20for%20the%20Examination%20Timetabling%20Problem&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Corr,%20P.%20H.&rft.date=2006&rft.spage=392&rft.epage=401&rft.pages=392-401&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540389903&rft.isbn_list=3540389903&rft_id=info:doi/10.1007/11844297_40&rft_dat=%3Cpascalfrancis_sprin%3E19687219%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540389911&rft.eisbn_list=9783540389910&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true