Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm
In this paper we describe a computationally intelligent approach to solving the dynamic vehicle routing problem where a fleet of vehicles needs to be routed to pick up loads at customers and drop them off at a depot. Loads are introduced online during the actual planning of the routes. The approach...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | |
container_start_page | 312 |
container_title | |
container_volume | |
creator | Bosman, Peter A. N. La Poutré, Han |
description | In this paper we describe a computationally intelligent approach to solving the dynamic vehicle routing problem where a fleet of vehicles needs to be routed to pick up loads at customers and drop them off at a depot. Loads are introduced online during the actual planning of the routes. The approach described in this paper uses an evolutionary algorithm (EA) as the basis of dynamic optimization. For enhanced performance, not only are currently known loads taken into consideration, also possible future loads are considered. To this end, a probabilistic model is built that describes the behavior of the load announcements. This allows the routing to make informed anticipated moves to customers where loads are expected to arrive shortly. Our approach outperforms not only an EA that only considers currently available loads, it also outperforms a recently proposed enhanced EA that performs anticipated moves but doesn’t employ explicit learning. Our final conclusion is that under the assumption that the load distribution over time shows sufficient regularity, this regularity can be learned and exploited explicitly to arrive at a substantial improvement in the final routing efficiency. |
doi_str_mv | 10.1007/11844297_32 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19687211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19687211</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-1c9c5ddf8532f73e59ee6dda62b446b499a9c561094dac0248a26713438dea8d3</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRc1Loi2d-ANeGBgC_mzn4bEqBSpVKkLAGjm2kxpcJ0pcRP49KQWJ6Q736OjqInQJ5AYISW8BMs6pSHNGj9CYxZywTAiAYzSCBCBijIsTNBVp9tcRdopGhBEaiZSzczTuundCCE0FHaFuXm-bXZDB1l461-OlD8Y5Wxkf8No76w2-673cWoXfzMYqZ_BzvQvWV7jo8eKrcVbZgFe11PipNdqqvQpbj6XHi8_a7X7UbY9nrqpbGzbbC3RWSteZ6W9O0Ov94mX-GK3WD8v5bBU1FESIQAkVa11mMaNlykwsjEm0lgktOE8KLoQcgASI4FoqQnkmaZIC4yzTRmaaTdDVwdvITklXttIr2-VNa7fDnhxEkqUUYOCuD1w3VL4ybV7U9UeXA8n3l-f_LmffI_xwJA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm</title><source>Springer Books</source><creator>Bosman, Peter A. N. ; La Poutré, Han</creator><contributor>Yao, Xin ; Whitley, L. Darrell ; Merelo-Guervós, Juan J. ; Runarsson, Thomas Philip ; Burke, Edmund ; Beyer, Hans-Georg</contributor><creatorcontrib>Bosman, Peter A. N. ; La Poutré, Han ; Yao, Xin ; Whitley, L. Darrell ; Merelo-Guervós, Juan J. ; Runarsson, Thomas Philip ; Burke, Edmund ; Beyer, Hans-Georg</creatorcontrib><description>In this paper we describe a computationally intelligent approach to solving the dynamic vehicle routing problem where a fleet of vehicles needs to be routed to pick up loads at customers and drop them off at a depot. Loads are introduced online during the actual planning of the routes. The approach described in this paper uses an evolutionary algorithm (EA) as the basis of dynamic optimization. For enhanced performance, not only are currently known loads taken into consideration, also possible future loads are considered. To this end, a probabilistic model is built that describes the behavior of the load announcements. This allows the routing to make informed anticipated moves to customers where loads are expected to arrive shortly. Our approach outperforms not only an EA that only considers currently available loads, it also outperforms a recently proposed enhanced EA that performs anticipated moves but doesn’t employ explicit learning. Our final conclusion is that under the assumption that the load distribution over time shows sufficient regularity, this regularity can be learned and exploited explicitly to arrive at a substantial improvement in the final routing efficiency.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540389903</identifier><identifier>ISBN: 3540389903</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540389911</identifier><identifier>EISBN: 9783540389910</identifier><identifier>DOI: 10.1007/11844297_32</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Action List ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Dynamic Optimization Problem ; Dynamic Vehicle ; Evolutionary Algorithm ; Exact sciences and technology ; Software ; Theoretical computing ; Time Spread</subject><ispartof>Lecture notes in computer science, 2006, p.312-321</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11844297_32$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11844297_32$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19687211$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yao, Xin</contributor><contributor>Whitley, L. Darrell</contributor><contributor>Merelo-Guervós, Juan J.</contributor><contributor>Runarsson, Thomas Philip</contributor><contributor>Burke, Edmund</contributor><contributor>Beyer, Hans-Georg</contributor><creatorcontrib>Bosman, Peter A. N.</creatorcontrib><creatorcontrib>La Poutré, Han</creatorcontrib><title>Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm</title><title>Lecture notes in computer science</title><description>In this paper we describe a computationally intelligent approach to solving the dynamic vehicle routing problem where a fleet of vehicles needs to be routed to pick up loads at customers and drop them off at a depot. Loads are introduced online during the actual planning of the routes. The approach described in this paper uses an evolutionary algorithm (EA) as the basis of dynamic optimization. For enhanced performance, not only are currently known loads taken into consideration, also possible future loads are considered. To this end, a probabilistic model is built that describes the behavior of the load announcements. This allows the routing to make informed anticipated moves to customers where loads are expected to arrive shortly. Our approach outperforms not only an EA that only considers currently available loads, it also outperforms a recently proposed enhanced EA that performs anticipated moves but doesn’t employ explicit learning. Our final conclusion is that under the assumption that the load distribution over time shows sufficient regularity, this regularity can be learned and exploited explicitly to arrive at a substantial improvement in the final routing efficiency.</description><subject>Action List</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Dynamic Optimization Problem</subject><subject>Dynamic Vehicle</subject><subject>Evolutionary Algorithm</subject><subject>Exact sciences and technology</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Time Spread</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540389903</isbn><isbn>3540389903</isbn><isbn>3540389911</isbn><isbn>9783540389910</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAYRc1Loi2d-ANeGBgC_mzn4bEqBSpVKkLAGjm2kxpcJ0pcRP49KQWJ6Q736OjqInQJ5AYISW8BMs6pSHNGj9CYxZywTAiAYzSCBCBijIsTNBVp9tcRdopGhBEaiZSzczTuundCCE0FHaFuXm-bXZDB1l461-OlD8Y5Wxkf8No76w2-673cWoXfzMYqZ_BzvQvWV7jo8eKrcVbZgFe11PipNdqqvQpbj6XHi8_a7X7UbY9nrqpbGzbbC3RWSteZ6W9O0Ov94mX-GK3WD8v5bBU1FESIQAkVa11mMaNlykwsjEm0lgktOE8KLoQcgASI4FoqQnkmaZIC4yzTRmaaTdDVwdvITklXttIr2-VNa7fDnhxEkqUUYOCuD1w3VL4ybV7U9UeXA8n3l-f_LmffI_xwJA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bosman, Peter A. N.</creator><creator>La Poutré, Han</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm</title><author>Bosman, Peter A. N. ; La Poutré, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-1c9c5ddf8532f73e59ee6dda62b446b499a9c561094dac0248a26713438dea8d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action List</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Dynamic Optimization Problem</topic><topic>Dynamic Vehicle</topic><topic>Evolutionary Algorithm</topic><topic>Exact sciences and technology</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Time Spread</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosman, Peter A. N.</creatorcontrib><creatorcontrib>La Poutré, Han</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosman, Peter A. N.</au><au>La Poutré, Han</au><au>Yao, Xin</au><au>Whitley, L. Darrell</au><au>Merelo-Guervós, Juan J.</au><au>Runarsson, Thomas Philip</au><au>Burke, Edmund</au><au>Beyer, Hans-Georg</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>312</spage><epage>321</epage><pages>312-321</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540389903</isbn><isbn>3540389903</isbn><eisbn>3540389911</eisbn><eisbn>9783540389910</eisbn><abstract>In this paper we describe a computationally intelligent approach to solving the dynamic vehicle routing problem where a fleet of vehicles needs to be routed to pick up loads at customers and drop them off at a depot. Loads are introduced online during the actual planning of the routes. The approach described in this paper uses an evolutionary algorithm (EA) as the basis of dynamic optimization. For enhanced performance, not only are currently known loads taken into consideration, also possible future loads are considered. To this end, a probabilistic model is built that describes the behavior of the load announcements. This allows the routing to make informed anticipated moves to customers where loads are expected to arrive shortly. Our approach outperforms not only an EA that only considers currently available loads, it also outperforms a recently proposed enhanced EA that performs anticipated moves but doesn’t employ explicit learning. Our final conclusion is that under the assumption that the load distribution over time shows sufficient regularity, this regularity can be learned and exploited explicitly to arrive at a substantial improvement in the final routing efficiency.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11844297_32</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.312-321 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19687211 |
source | Springer Books |
subjects | Action List Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Dynamic Optimization Problem Dynamic Vehicle Evolutionary Algorithm Exact sciences and technology Software Theoretical computing Time Spread |
title | Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computationally%20Intelligent%20Online%20Dynamic%20Vehicle%20Routing%20by%20Explicit%20Load%20Prediction%20in%20an%20Evolutionary%20Algorithm&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bosman,%20Peter%20A.%20N.&rft.date=2006&rft.spage=312&rft.epage=321&rft.pages=312-321&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540389903&rft.isbn_list=3540389903&rft_id=info:doi/10.1007/11844297_32&rft_dat=%3Cpascalfrancis_sprin%3E19687211%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540389911&rft.eisbn_list=9783540389910&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |