A Covariance Matrix Based Approach to Internet Anomaly Detection

Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin, Shuyuan, Yeung, Daniel So, Wang, Xizhao, Tsang, Eric C. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue
container_start_page 691
container_title
container_volume
creator Jin, Shuyuan
Yeung, Daniel So
Wang, Xizhao
Tsang, Eric C. C.
description Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matrices among observed samples in the detection. A threshold matrix is employed in the detection where each entry of the matrix evaluates the covariance changes of the corresponding features. As case studies, extensive experiments are conducted to detect multiple DoS attacks – the prevalent Internet anomalies. The experimental results indicate that the proposed approach achieves high detection rates in detecting multiple known and unknown anomalies.
doi_str_mv 10.1007/11739685_72
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686508</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6d3b65fd5bae591d7a37cad25756c83ad0c01e547e66d556901836776ab068ff3</originalsourceid><addsrcrecordid>eNpNkDtPw0AQhI-XRAip-APXUFAY9ry-PV-HE16Rgmigttb2GQyJbd1ZiPx7jAIS00wxo9HoE-JMwaUCMFdKGbSU6tzEe2JmTYo6AUSdatoXE0VKRYiJPRAnf0FCh2ICCHFkTYLHYhbCO4xCRQB2Iq4zueg-2Tfclk4-8uCbLznn4CqZ9b3vuHyTQyeX7eB86waZtd2G11t54wZXDk3XnoqjmtfBzX59Kl7ubp8XD9Hq6X65yFZRHys7RFRhQbqudMFOW1UZRlNyFWujqUyRKyhBOZ0YR1RpTRZUimQMcQGU1jVOxflut-dQ8rr24-Em5L1vNuy3uRqxkIZ07F3semGM2lfn86LrPkKuIP9BmP9DiN_0o1x9</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Covariance Matrix Based Approach to Internet Anomaly Detection</title><source>Springer Books</source><creator>Jin, Shuyuan ; Yeung, Daniel So ; Wang, Xizhao ; Tsang, Eric C. C.</creator><contributor>Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</contributor><creatorcontrib>Jin, Shuyuan ; Yeung, Daniel So ; Wang, Xizhao ; Tsang, Eric C. C. ; Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</creatorcontrib><description>Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matrices among observed samples in the detection. A threshold matrix is employed in the detection where each entry of the matrix evaluates the covariance changes of the corresponding features. As case studies, extensive experiments are conducted to detect multiple DoS attacks – the prevalent Internet anomalies. The experimental results indicate that the proposed approach achieves high detection rates in detecting multiple known and unknown anomalies.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540335846</identifier><identifier>ISBN: 9783540335849</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540335856</identifier><identifier>EISBN: 3540335854</identifier><identifier>DOI: 10.1007/11739685_72</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomaly Detection ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Covariance Matrix ; Exact sciences and technology ; False Alarm Rate ; Intrusion Detection ; Intrusion Detection System ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Software</subject><ispartof>Advances in Machine Learning and Cybernetics, 2006, p.691-700</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11739685_72$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11739685_72$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19686508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yan, Hong</contributor><contributor>Yeung, Daniel S.</contributor><contributor>Wang, Xi-Zhao</contributor><contributor>Liu, Zhi-Qiang</contributor><creatorcontrib>Jin, Shuyuan</creatorcontrib><creatorcontrib>Yeung, Daniel So</creatorcontrib><creatorcontrib>Wang, Xizhao</creatorcontrib><creatorcontrib>Tsang, Eric C. C.</creatorcontrib><title>A Covariance Matrix Based Approach to Internet Anomaly Detection</title><title>Advances in Machine Learning and Cybernetics</title><description>Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matrices among observed samples in the detection. A threshold matrix is employed in the detection where each entry of the matrix evaluates the covariance changes of the corresponding features. As case studies, extensive experiments are conducted to detect multiple DoS attacks – the prevalent Internet anomalies. The experimental results indicate that the proposed approach achieves high detection rates in detecting multiple known and unknown anomalies.</description><subject>Anomaly Detection</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Covariance Matrix</subject><subject>Exact sciences and technology</subject><subject>False Alarm Rate</subject><subject>Intrusion Detection</subject><subject>Intrusion Detection System</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540335846</isbn><isbn>9783540335849</isbn><isbn>9783540335856</isbn><isbn>3540335854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPw0AQhI-XRAip-APXUFAY9ry-PV-HE16Rgmigttb2GQyJbd1ZiPx7jAIS00wxo9HoE-JMwaUCMFdKGbSU6tzEe2JmTYo6AUSdatoXE0VKRYiJPRAnf0FCh2ICCHFkTYLHYhbCO4xCRQB2Iq4zueg-2Tfclk4-8uCbLznn4CqZ9b3vuHyTQyeX7eB86waZtd2G11t54wZXDk3XnoqjmtfBzX59Kl7ubp8XD9Hq6X65yFZRHys7RFRhQbqudMFOW1UZRlNyFWujqUyRKyhBOZ0YR1RpTRZUimQMcQGU1jVOxflut-dQ8rr24-Em5L1vNuy3uRqxkIZ07F3semGM2lfn86LrPkKuIP9BmP9DiN_0o1x9</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jin, Shuyuan</creator><creator>Yeung, Daniel So</creator><creator>Wang, Xizhao</creator><creator>Tsang, Eric C. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Covariance Matrix Based Approach to Internet Anomaly Detection</title><author>Jin, Shuyuan ; Yeung, Daniel So ; Wang, Xizhao ; Tsang, Eric C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6d3b65fd5bae591d7a37cad25756c83ad0c01e547e66d556901836776ab068ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anomaly Detection</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Covariance Matrix</topic><topic>Exact sciences and technology</topic><topic>False Alarm Rate</topic><topic>Intrusion Detection</topic><topic>Intrusion Detection System</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Shuyuan</creatorcontrib><creatorcontrib>Yeung, Daniel So</creatorcontrib><creatorcontrib>Wang, Xizhao</creatorcontrib><creatorcontrib>Tsang, Eric C. C.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Shuyuan</au><au>Yeung, Daniel So</au><au>Wang, Xizhao</au><au>Tsang, Eric C. C.</au><au>Yan, Hong</au><au>Yeung, Daniel S.</au><au>Wang, Xi-Zhao</au><au>Liu, Zhi-Qiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Covariance Matrix Based Approach to Internet Anomaly Detection</atitle><btitle>Advances in Machine Learning and Cybernetics</btitle><date>2006</date><risdate>2006</risdate><spage>691</spage><epage>700</epage><pages>691-700</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540335846</isbn><isbn>9783540335849</isbn><eisbn>9783540335856</eisbn><eisbn>3540335854</eisbn><abstract>Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matrices among observed samples in the detection. A threshold matrix is employed in the detection where each entry of the matrix evaluates the covariance changes of the corresponding features. As case studies, extensive experiments are conducted to detect multiple DoS attacks – the prevalent Internet anomalies. The experimental results indicate that the proposed approach achieves high detection rates in detecting multiple known and unknown anomalies.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11739685_72</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Machine Learning and Cybernetics, 2006, p.691-700
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19686508
source Springer Books
subjects Anomaly Detection
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Covariance Matrix
Exact sciences and technology
False Alarm Rate
Intrusion Detection
Intrusion Detection System
Memory and file management (including protection and security)
Memory organisation. Data processing
Software
title A Covariance Matrix Based Approach to Internet Anomaly Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Covariance%20Matrix%20Based%20Approach%20to%20Internet%20Anomaly%20Detection&rft.btitle=Advances%20in%20Machine%20Learning%20and%20Cybernetics&rft.au=Jin,%20Shuyuan&rft.date=2006&rft.spage=691&rft.epage=700&rft.pages=691-700&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540335846&rft.isbn_list=9783540335849&rft_id=info:doi/10.1007/11739685_72&rft_dat=%3Cpascalfrancis_sprin%3E19686508%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540335856&rft.eisbn_list=3540335854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true