Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach

In this paper we develop a fuzzy neural network (FNN) with a new BP learning algorithm using some smooth function, which is used to tune the local and global weights of fuzzy production rules (FPRs) so as to enhance the representation power of FPRs. The aim of including local and global weights in F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huang, Dong-mei, Ha, Ming-hu, Li, Ya-min, Tsang, Eric C. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue
container_start_page 517
container_title
container_volume
creator Huang, Dong-mei
Ha, Ming-hu
Li, Ya-min
Tsang, Eric C. C.
description In this paper we develop a fuzzy neural network (FNN) with a new BP learning algorithm using some smooth function, which is used to tune the local and global weights of fuzzy production rules (FPRs) so as to enhance the representation power of FPRs. The aim of including local and global weights in FPRs and the tuning of these weights is to improve the learning and testing accuracy without increasing the number of rules. By experimenting with some existing benchmark examples (Iris data, Wine data, Pima data and Glass data) the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the extracted FPRs, and furthermore, the time required to consult with domain experts for gaining a rule is reduced. The synergy between WFPRs and an FNN offers a new insight into the construction of better fuzzy intelligent systems in the future.
doi_str_mv 10.1007/11739685_54
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686490</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-54918d3d0ea205509248217e72d7bea924f798145f538efe779aa1a9b5a9647b3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrEd22NVtYBUAarobL0kdgmkSWQ3Q_vrCSpIvOXq6R7d4RByA-weGFMPAIqbTEsrxQmZGKW5FIxzqWV2SkaQASScC3NGrv4KkZ2TEeMsTYwS_JJMYvxkw3HIGDMjMl85XzVu65odbT1d9IfDnr6FtuyLXdU2dNXXLtJ8T9exajYUj0Ty4vqANZ12XWix-LgmFx7r6Ca_OSbrxfx99pQsXx-fZ9Nl0qVgdokUBnTJS-YwZVIykwqdgnIqLVXucHi9MhqE9JJr551SBhHQ5BJNJlTOx-T2uNthLLD2AZuiirYL1RbD3sLgJhOGDdzdkYtD1WxcsHnbfkULzP54tP888m8hYl4r</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach</title><source>Springer Books</source><creator>Huang, Dong-mei ; Ha, Ming-hu ; Li, Ya-min ; Tsang, Eric C. C.</creator><contributor>Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</contributor><creatorcontrib>Huang, Dong-mei ; Ha, Ming-hu ; Li, Ya-min ; Tsang, Eric C. C. ; Yan, Hong ; Yeung, Daniel S. ; Wang, Xi-Zhao ; Liu, Zhi-Qiang</creatorcontrib><description>In this paper we develop a fuzzy neural network (FNN) with a new BP learning algorithm using some smooth function, which is used to tune the local and global weights of fuzzy production rules (FPRs) so as to enhance the representation power of FPRs. The aim of including local and global weights in FPRs and the tuning of these weights is to improve the learning and testing accuracy without increasing the number of rules. By experimenting with some existing benchmark examples (Iris data, Wine data, Pima data and Glass data) the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the extracted FPRs, and furthermore, the time required to consult with domain experts for gaining a rule is reduced. The synergy between WFPRs and an FNN offers a new insight into the construction of better fuzzy intelligent systems in the future.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540335846</identifier><identifier>ISBN: 9783540335849</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540335856</identifier><identifier>EISBN: 3540335854</identifier><identifier>DOI: 10.1007/11739685_54</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Advances in Machine Learning and Cybernetics, 2006, p.517-527</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11739685_54$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11739685_54$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4047,4048,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19686490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yan, Hong</contributor><contributor>Yeung, Daniel S.</contributor><contributor>Wang, Xi-Zhao</contributor><contributor>Liu, Zhi-Qiang</contributor><creatorcontrib>Huang, Dong-mei</creatorcontrib><creatorcontrib>Ha, Ming-hu</creatorcontrib><creatorcontrib>Li, Ya-min</creatorcontrib><creatorcontrib>Tsang, Eric C. C.</creatorcontrib><title>Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach</title><title>Advances in Machine Learning and Cybernetics</title><description>In this paper we develop a fuzzy neural network (FNN) with a new BP learning algorithm using some smooth function, which is used to tune the local and global weights of fuzzy production rules (FPRs) so as to enhance the representation power of FPRs. The aim of including local and global weights in FPRs and the tuning of these weights is to improve the learning and testing accuracy without increasing the number of rules. By experimenting with some existing benchmark examples (Iris data, Wine data, Pima data and Glass data) the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the extracted FPRs, and furthermore, the time required to consult with domain experts for gaining a rule is reduced. The synergy between WFPRs and an FNN offers a new insight into the construction of better fuzzy intelligent systems in the future.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540335846</isbn><isbn>9783540335849</isbn><isbn>9783540335856</isbn><isbn>3540335854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfrEd22NVtYBUAarobL0kdgmkSWQ3Q_vrCSpIvOXq6R7d4RByA-weGFMPAIqbTEsrxQmZGKW5FIxzqWV2SkaQASScC3NGrv4KkZ2TEeMsTYwS_JJMYvxkw3HIGDMjMl85XzVu65odbT1d9IfDnr6FtuyLXdU2dNXXLtJ8T9exajYUj0Ty4vqANZ12XWix-LgmFx7r6Ca_OSbrxfx99pQsXx-fZ9Nl0qVgdokUBnTJS-YwZVIykwqdgnIqLVXucHi9MhqE9JJr551SBhHQ5BJNJlTOx-T2uNthLLD2AZuiirYL1RbD3sLgJhOGDdzdkYtD1WxcsHnbfkULzP54tP888m8hYl4r</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Huang, Dong-mei</creator><creator>Ha, Ming-hu</creator><creator>Li, Ya-min</creator><creator>Tsang, Eric C. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach</title><author>Huang, Dong-mei ; Ha, Ming-hu ; Li, Ya-min ; Tsang, Eric C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-54918d3d0ea205509248217e72d7bea924f798145f538efe779aa1a9b5a9647b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dong-mei</creatorcontrib><creatorcontrib>Ha, Ming-hu</creatorcontrib><creatorcontrib>Li, Ya-min</creatorcontrib><creatorcontrib>Tsang, Eric C. C.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dong-mei</au><au>Ha, Ming-hu</au><au>Li, Ya-min</au><au>Tsang, Eric C. C.</au><au>Yan, Hong</au><au>Yeung, Daniel S.</au><au>Wang, Xi-Zhao</au><au>Liu, Zhi-Qiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach</atitle><btitle>Advances in Machine Learning and Cybernetics</btitle><date>2006</date><risdate>2006</risdate><spage>517</spage><epage>527</epage><pages>517-527</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540335846</isbn><isbn>9783540335849</isbn><eisbn>9783540335856</eisbn><eisbn>3540335854</eisbn><abstract>In this paper we develop a fuzzy neural network (FNN) with a new BP learning algorithm using some smooth function, which is used to tune the local and global weights of fuzzy production rules (FPRs) so as to enhance the representation power of FPRs. The aim of including local and global weights in FPRs and the tuning of these weights is to improve the learning and testing accuracy without increasing the number of rules. By experimenting with some existing benchmark examples (Iris data, Wine data, Pima data and Glass data) the proposed method is found to have high accuracy in classifying unseen samples without increasing the number of the extracted FPRs, and furthermore, the time required to consult with domain experts for gaining a rule is reduced. The synergy between WFPRs and an FNN offers a new insight into the construction of better fuzzy intelligent systems in the future.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11739685_54</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Machine Learning and Cybernetics, 2006, p.517-527
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19686490
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Refinement of Fuzzy Production Rules by Using a Fuzzy-Neural Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Refinement%20of%20Fuzzy%20Production%20Rules%20by%20Using%20a%20Fuzzy-Neural%20Approach&rft.btitle=Advances%20in%20Machine%20Learning%20and%20Cybernetics&rft.au=Huang,%20Dong-mei&rft.date=2006&rft.spage=517&rft.epage=527&rft.pages=517-527&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540335846&rft.isbn_list=9783540335849&rft_id=info:doi/10.1007/11739685_54&rft_dat=%3Cpascalfrancis_sprin%3E19686490%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540335856&rft.eisbn_list=3540335854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true