A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation

With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Ming Che, Tsai, Kun Hua, Ye, Ding Yen, Wang, Tzone I
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue
container_start_page 336
container_title
container_volume
creator Lee, Ming Che
Tsai, Kun Hua
Ye, Ding Yen
Wang, Tzone I
description With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.
doi_str_mv 10.1007/11925293_30
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686247</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bac5515577dd5691555b44d0ddc300cf047dd2f152b4b046d9358e9f5ca314533</originalsourceid><addsrcrecordid>eNpNkMtOwzAURM1LopSu-AFvWLAIXL_ieFkqCkiVinhI7CzHdqq0iVPZURF8PUFFiNXcmTO6i0HogsA1AZA3hCgqqGKawQGaKFkwwSEvBKjiEI1ITkjGGFdHf4wroJIeoxEwoJmSnJ2is5TWAEOu6Ai9T_GLj7va-uzWJO_wPJrWf3Rxg6su4icfUxdMU38NaOFNDHVY4WW59rZP-Nn3sfY702AT3OBs17Y-ONPXXThHJ5Vpkp_86hi9ze9eZw_ZYnn_OJsusi0lqs9KY4UgQkjpnMjVcImScwfOWQZgK-ADoBURtOQl8NwpJgqvKmENI1wwNkaX-79bk6xpqmiCrZPexro18VMTlRc55XLoXe17aUBh5aMuu26TNAH9M63-Ny37Bvr7ZaE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><source>Springer Books</source><creator>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I</creator><contributor>Liu, Wenyin ; W.H. Lau, Rynson ; Li, Qing</contributor><creatorcontrib>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I ; Liu, Wenyin ; W.H. Lau, Rynson ; Li, Qing</creatorcontrib><description>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540490272</identifier><identifier>ISBN: 3540490272</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685098</identifier><identifier>EISBN: 354068509X</identifier><identifier>DOI: 10.1007/11925293_30</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Collaborative Feedback ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information systems. Data bases ; LOM ; Memory organisation. Data processing ; Ontology ; Preference ; Recommendation ; Retrieval ; Software</subject><ispartof>Advances in Web Based Learning – ICWL 2006, 2006, p.336-351</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11925293_30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11925293_30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19686247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Liu, Wenyin</contributor><contributor>W.H. Lau, Rynson</contributor><contributor>Li, Qing</contributor><creatorcontrib>Lee, Ming Che</creatorcontrib><creatorcontrib>Tsai, Kun Hua</creatorcontrib><creatorcontrib>Ye, Ding Yen</creatorcontrib><creatorcontrib>Wang, Tzone I</creatorcontrib><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><title>Advances in Web Based Learning – ICWL 2006</title><description>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Collaborative Feedback</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>LOM</subject><subject>Memory organisation. Data processing</subject><subject>Ontology</subject><subject>Preference</subject><subject>Recommendation</subject><subject>Retrieval</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540490272</isbn><isbn>3540490272</isbn><isbn>9783540685098</isbn><isbn>354068509X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtOwzAURM1LopSu-AFvWLAIXL_ieFkqCkiVinhI7CzHdqq0iVPZURF8PUFFiNXcmTO6i0HogsA1AZA3hCgqqGKawQGaKFkwwSEvBKjiEI1ITkjGGFdHf4wroJIeoxEwoJmSnJ2is5TWAEOu6Ai9T_GLj7va-uzWJO_wPJrWf3Rxg6su4icfUxdMU38NaOFNDHVY4WW59rZP-Nn3sfY702AT3OBs17Y-ONPXXThHJ5Vpkp_86hi9ze9eZw_ZYnn_OJsusi0lqs9KY4UgQkjpnMjVcImScwfOWQZgK-ADoBURtOQl8NwpJgqvKmENI1wwNkaX-79bk6xpqmiCrZPexro18VMTlRc55XLoXe17aUBh5aMuu26TNAH9M63-Ny37Bvr7ZaE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lee, Ming Che</creator><creator>Tsai, Kun Hua</creator><creator>Ye, Ding Yen</creator><creator>Wang, Tzone I</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><author>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bac5515577dd5691555b44d0ddc300cf047dd2f152b4b046d9358e9f5ca314533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Collaborative Feedback</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>LOM</topic><topic>Memory organisation. Data processing</topic><topic>Ontology</topic><topic>Preference</topic><topic>Recommendation</topic><topic>Retrieval</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ming Che</creatorcontrib><creatorcontrib>Tsai, Kun Hua</creatorcontrib><creatorcontrib>Ye, Ding Yen</creatorcontrib><creatorcontrib>Wang, Tzone I</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ming Che</au><au>Tsai, Kun Hua</au><au>Ye, Ding Yen</au><au>Wang, Tzone I</au><au>Liu, Wenyin</au><au>W.H. Lau, Rynson</au><au>Li, Qing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</atitle><btitle>Advances in Web Based Learning – ICWL 2006</btitle><date>2006</date><risdate>2006</risdate><spage>336</spage><epage>351</epage><pages>336-351</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540490272</isbn><isbn>3540490272</isbn><eisbn>9783540685098</eisbn><eisbn>354068509X</eisbn><abstract>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11925293_30</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Web Based Learning – ICWL 2006, 2006, p.336-351
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19686247
source Springer Books
subjects Applied sciences
Artificial intelligence
Collaborative Feedback
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Exact sciences and technology
Information systems. Data bases
LOM
Memory organisation. Data processing
Ontology
Preference
Recommendation
Retrieval
Software
title A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Service-Based%20Framework%20for%20Personalized%20Learning%20Objects%20Retrieval%20and%20Recommendation&rft.btitle=Advances%20in%20Web%20Based%20Learning%20%E2%80%93%20ICWL%202006&rft.au=Lee,%20Ming%20Che&rft.date=2006&rft.spage=336&rft.epage=351&rft.pages=336-351&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540490272&rft.isbn_list=3540490272&rft_id=info:doi/10.1007/11925293_30&rft_dat=%3Cpascalfrancis_sprin%3E19686247%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685098&rft.eisbn_list=354068509X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true