A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation
With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCO...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | |
container_start_page | 336 |
container_title | |
container_volume | |
creator | Lee, Ming Che Tsai, Kun Hua Ye, Ding Yen Wang, Tzone I |
description | With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed. |
doi_str_mv | 10.1007/11925293_30 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19686247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19686247</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bac5515577dd5691555b44d0ddc300cf047dd2f152b4b046d9358e9f5ca314533</originalsourceid><addsrcrecordid>eNpNkMtOwzAURM1LopSu-AFvWLAIXL_ieFkqCkiVinhI7CzHdqq0iVPZURF8PUFFiNXcmTO6i0HogsA1AZA3hCgqqGKawQGaKFkwwSEvBKjiEI1ITkjGGFdHf4wroJIeoxEwoJmSnJ2is5TWAEOu6Ai9T_GLj7va-uzWJO_wPJrWf3Rxg6su4icfUxdMU38NaOFNDHVY4WW59rZP-Nn3sfY702AT3OBs17Y-ONPXXThHJ5Vpkp_86hi9ze9eZw_ZYnn_OJsusi0lqs9KY4UgQkjpnMjVcImScwfOWQZgK-ADoBURtOQl8NwpJgqvKmENI1wwNkaX-79bk6xpqmiCrZPexro18VMTlRc55XLoXe17aUBh5aMuu26TNAH9M63-Ny37Bvr7ZaE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><source>Springer Books</source><creator>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I</creator><contributor>Liu, Wenyin ; W.H. Lau, Rynson ; Li, Qing</contributor><creatorcontrib>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I ; Liu, Wenyin ; W.H. Lau, Rynson ; Li, Qing</creatorcontrib><description>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540490272</identifier><identifier>ISBN: 3540490272</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685098</identifier><identifier>EISBN: 354068509X</identifier><identifier>DOI: 10.1007/11925293_30</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Collaborative Feedback ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information systems. Data bases ; LOM ; Memory organisation. Data processing ; Ontology ; Preference ; Recommendation ; Retrieval ; Software</subject><ispartof>Advances in Web Based Learning – ICWL 2006, 2006, p.336-351</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11925293_30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11925293_30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19686247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Liu, Wenyin</contributor><contributor>W.H. Lau, Rynson</contributor><contributor>Li, Qing</contributor><creatorcontrib>Lee, Ming Che</creatorcontrib><creatorcontrib>Tsai, Kun Hua</creatorcontrib><creatorcontrib>Ye, Ding Yen</creatorcontrib><creatorcontrib>Wang, Tzone I</creatorcontrib><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><title>Advances in Web Based Learning – ICWL 2006</title><description>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Collaborative Feedback</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>LOM</subject><subject>Memory organisation. Data processing</subject><subject>Ontology</subject><subject>Preference</subject><subject>Recommendation</subject><subject>Retrieval</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540490272</isbn><isbn>3540490272</isbn><isbn>9783540685098</isbn><isbn>354068509X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtOwzAURM1LopSu-AFvWLAIXL_ieFkqCkiVinhI7CzHdqq0iVPZURF8PUFFiNXcmTO6i0HogsA1AZA3hCgqqGKawQGaKFkwwSEvBKjiEI1ITkjGGFdHf4wroJIeoxEwoJmSnJ2is5TWAEOu6Ai9T_GLj7va-uzWJO_wPJrWf3Rxg6su4icfUxdMU38NaOFNDHVY4WW59rZP-Nn3sfY702AT3OBs17Y-ONPXXThHJ5Vpkp_86hi9ze9eZw_ZYnn_OJsusi0lqs9KY4UgQkjpnMjVcImScwfOWQZgK-ADoBURtOQl8NwpJgqvKmENI1wwNkaX-79bk6xpqmiCrZPexro18VMTlRc55XLoXe17aUBh5aMuu26TNAH9M63-Ny37Bvr7ZaE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Lee, Ming Che</creator><creator>Tsai, Kun Hua</creator><creator>Ye, Ding Yen</creator><creator>Wang, Tzone I</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</title><author>Lee, Ming Che ; Tsai, Kun Hua ; Ye, Ding Yen ; Wang, Tzone I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bac5515577dd5691555b44d0ddc300cf047dd2f152b4b046d9358e9f5ca314533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Collaborative Feedback</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>LOM</topic><topic>Memory organisation. Data processing</topic><topic>Ontology</topic><topic>Preference</topic><topic>Recommendation</topic><topic>Retrieval</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ming Che</creatorcontrib><creatorcontrib>Tsai, Kun Hua</creatorcontrib><creatorcontrib>Ye, Ding Yen</creatorcontrib><creatorcontrib>Wang, Tzone I</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ming Che</au><au>Tsai, Kun Hua</au><au>Ye, Ding Yen</au><au>Wang, Tzone I</au><au>Liu, Wenyin</au><au>W.H. Lau, Rynson</au><au>Li, Qing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation</atitle><btitle>Advances in Web Based Learning – ICWL 2006</btitle><date>2006</date><risdate>2006</risdate><spage>336</spage><epage>351</epage><pages>336-351</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540490272</isbn><isbn>3540490272</isbn><eisbn>9783540685098</eisbn><eisbn>354068509X</eisbn><abstract>With vigorous development of Internet, especially the web page interaction technology, distant e-learning has become more and more realistic and popular. To solve the problems of sharing and reusing teaching materials in different e-learning systems, presently several standard formats, including SCORM, IMS, LOM, and AICC, etc., have been proposed by several different international organizations. SCORM LOM, i.e. the Learning Object Metadata, enables the indexing and searching of learning objects in a learning object repository by extended sharing and searching features. However, LOM is deficient in semantic-awareness operations in spite of its multifarious fields in describing a Learning Object. It is difficult for a learner, even for advanced learners, to completely specify so many terms when they are searching. This paper proposes a service-based framework for personalized learning objects retrieval and recommendation. The work of personalization harnesses the power of probabilistic semantic inference for query keywords, LOM-based user preference logging, and other users’ feedback for recommendation weighting to retrieve the most suitable learning object for users. An ontology-based query expansion algorithm and an integrated learning objects recommendation algorithm are also proposed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11925293_30</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Web Based Learning – ICWL 2006, 2006, p.336-351 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19686247 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Collaborative Feedback Computer science control theory systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Exact sciences and technology Information systems. Data bases LOM Memory organisation. Data processing Ontology Preference Recommendation Retrieval Software |
title | A Service-Based Framework for Personalized Learning Objects Retrieval and Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Service-Based%20Framework%20for%20Personalized%20Learning%20Objects%20Retrieval%20and%20Recommendation&rft.btitle=Advances%20in%20Web%20Based%20Learning%20%E2%80%93%20ICWL%202006&rft.au=Lee,%20Ming%20Che&rft.date=2006&rft.spage=336&rft.epage=351&rft.pages=336-351&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540490272&rft.isbn_list=3540490272&rft_id=info:doi/10.1007/11925293_30&rft_dat=%3Cpascalfrancis_sprin%3E19686247%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685098&rft.eisbn_list=354068509X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |