A Novel Mining Algorithm for Periodic Clustering Sequential Patterns

In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hung, Che-Lun, Yang, Don-Lin, Chung, Yeh-Ching, Hung, Ming-Chuan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue
container_start_page 1299
container_title
container_volume
creator Hung, Che-Lun
Yang, Don-Lin
Chung, Yeh-Ching
Hung, Ming-Chuan
description In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.
doi_str_mv 10.1007/11779568_137
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19685794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19685794</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-4b0b99f18e90e9ec0f7c32a5aec2fcda783a81b5640fbe88b3d9fbd09006fd533</originalsourceid><addsrcrecordid>eNpNkFtLAzEQheMNrLVv_oC8-CKsTjbJZvNYWm9QtaA-hySb1Oh2d022gv_eLRV04DDMzMdhOAidEbgkAOKKECEkL0pFqNhDJ5QzGMSZ3EcjUhCSUcrkwd-BwiEaAYU8k4LRYzRJ6R2GooSLgozQfIof2y9X44fQhGaFp_WqjaF_W2PfRrx0MbRVsHhWb1I_DAPx7D43rumDrvFS98OySafoyOs6uclvH6PXm-uX2V22eLq9n00XWZfn0GfMgJHSk9JJcNJZ8MLSXHPtbO5tpUVJdUkMLxh448rS0Ep6U4EEKHzFKR2j851vp5PVtY-6sSGpLoa1jt-KyKLkQrKBu9hxqdu-7KIybfuRFAG1DVH9D5H-AEFgX0k</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><source>Springer Books</source><creator>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan</creator><contributor>Ali, Moonis ; Dapoigny, Richard</contributor><creatorcontrib>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan ; Ali, Moonis ; Dapoigny, Richard</creatorcontrib><description>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540354530</identifier><identifier>ISBN: 9783540354536</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540354549</identifier><identifier>EISBN: 9783540354543</identifier><identifier>DOI: 10.1007/11779568_137</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Decision theory. Utility theory ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Mathematics ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Sciences and techniques of general use ; Software ; Statistics</subject><ispartof>Advances in Applied Artificial Intelligence, 2006, p.1299-1308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11779568_137$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11779568_137$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19685794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ali, Moonis</contributor><contributor>Dapoigny, Richard</contributor><creatorcontrib>Hung, Che-Lun</creatorcontrib><creatorcontrib>Yang, Don-Lin</creatorcontrib><creatorcontrib>Chung, Yeh-Ching</creatorcontrib><creatorcontrib>Hung, Ming-Chuan</creatorcontrib><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><title>Advances in Applied Artificial Intelligence</title><description>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540354530</isbn><isbn>9783540354536</isbn><isbn>3540354549</isbn><isbn>9783540354543</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkFtLAzEQheMNrLVv_oC8-CKsTjbJZvNYWm9QtaA-hySb1Oh2d022gv_eLRV04DDMzMdhOAidEbgkAOKKECEkL0pFqNhDJ5QzGMSZ3EcjUhCSUcrkwd-BwiEaAYU8k4LRYzRJ6R2GooSLgozQfIof2y9X44fQhGaFp_WqjaF_W2PfRrx0MbRVsHhWb1I_DAPx7D43rumDrvFS98OySafoyOs6uclvH6PXm-uX2V22eLq9n00XWZfn0GfMgJHSk9JJcNJZ8MLSXHPtbO5tpUVJdUkMLxh448rS0Ep6U4EEKHzFKR2j851vp5PVtY-6sSGpLoa1jt-KyKLkQrKBu9hxqdu-7KIybfuRFAG1DVH9D5H-AEFgX0k</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Hung, Che-Lun</creator><creator>Yang, Don-Lin</creator><creator>Chung, Yeh-Ching</creator><creator>Hung, Ming-Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><author>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-4b0b99f18e90e9ec0f7c32a5aec2fcda783a81b5640fbe88b3d9fbd09006fd533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Che-Lun</creatorcontrib><creatorcontrib>Yang, Don-Lin</creatorcontrib><creatorcontrib>Chung, Yeh-Ching</creatorcontrib><creatorcontrib>Hung, Ming-Chuan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Che-Lun</au><au>Yang, Don-Lin</au><au>Chung, Yeh-Ching</au><au>Hung, Ming-Chuan</au><au>Ali, Moonis</au><au>Dapoigny, Richard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</atitle><btitle>Advances in Applied Artificial Intelligence</btitle><date>2006</date><risdate>2006</risdate><spage>1299</spage><epage>1308</epage><pages>1299-1308</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540354530</isbn><isbn>9783540354536</isbn><eisbn>3540354549</eisbn><eisbn>9783540354543</eisbn><abstract>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11779568_137</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Applied Artificial Intelligence, 2006, p.1299-1308
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19685794
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data processing. List processing. Character string processing
Decision theory. Utility theory
Exact sciences and technology
Inference from stochastic processes
time series analysis
Mathematics
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Probability and statistics
Sciences and techniques of general use
Software
Statistics
title A Novel Mining Algorithm for Periodic Clustering Sequential Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Mining%20Algorithm%20for%20Periodic%20Clustering%20Sequential%20Patterns&rft.btitle=Advances%20in%20Applied%20Artificial%20Intelligence&rft.au=Hung,%20Che-Lun&rft.date=2006&rft.spage=1299&rft.epage=1308&rft.pages=1299-1308&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540354530&rft.isbn_list=9783540354536&rft_id=info:doi/10.1007/11779568_137&rft_dat=%3Cpascalfrancis_sprin%3E19685794%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540354549&rft.eisbn_list=9783540354543&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true