A Novel Mining Algorithm for Periodic Clustering Sequential Patterns
In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering seq...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | |
container_start_page | 1299 |
container_title | |
container_volume | |
creator | Hung, Che-Lun Yang, Don-Lin Chung, Yeh-Ching Hung, Ming-Chuan |
description | In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making. |
doi_str_mv | 10.1007/11779568_137 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19685794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19685794</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-4b0b99f18e90e9ec0f7c32a5aec2fcda783a81b5640fbe88b3d9fbd09006fd533</originalsourceid><addsrcrecordid>eNpNkFtLAzEQheMNrLVv_oC8-CKsTjbJZvNYWm9QtaA-hySb1Oh2d022gv_eLRV04DDMzMdhOAidEbgkAOKKECEkL0pFqNhDJ5QzGMSZ3EcjUhCSUcrkwd-BwiEaAYU8k4LRYzRJ6R2GooSLgozQfIof2y9X44fQhGaFp_WqjaF_W2PfRrx0MbRVsHhWb1I_DAPx7D43rumDrvFS98OySafoyOs6uclvH6PXm-uX2V22eLq9n00XWZfn0GfMgJHSk9JJcNJZ8MLSXHPtbO5tpUVJdUkMLxh448rS0Ep6U4EEKHzFKR2j851vp5PVtY-6sSGpLoa1jt-KyKLkQrKBu9hxqdu-7KIybfuRFAG1DVH9D5H-AEFgX0k</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><source>Springer Books</source><creator>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan</creator><contributor>Ali, Moonis ; Dapoigny, Richard</contributor><creatorcontrib>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan ; Ali, Moonis ; Dapoigny, Richard</creatorcontrib><description>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540354530</identifier><identifier>ISBN: 9783540354536</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540354549</identifier><identifier>EISBN: 9783540354543</identifier><identifier>DOI: 10.1007/11779568_137</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Decision theory. Utility theory ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Mathematics ; Memory organisation. Data processing ; Operational research and scientific management ; Operational research. Management science ; Probability and statistics ; Sciences and techniques of general use ; Software ; Statistics</subject><ispartof>Advances in Applied Artificial Intelligence, 2006, p.1299-1308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11779568_137$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11779568_137$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19685794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ali, Moonis</contributor><contributor>Dapoigny, Richard</contributor><creatorcontrib>Hung, Che-Lun</creatorcontrib><creatorcontrib>Yang, Don-Lin</creatorcontrib><creatorcontrib>Chung, Yeh-Ching</creatorcontrib><creatorcontrib>Hung, Ming-Chuan</creatorcontrib><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><title>Advances in Applied Artificial Intelligence</title><description>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Memory organisation. Data processing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540354530</isbn><isbn>9783540354536</isbn><isbn>3540354549</isbn><isbn>9783540354543</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkFtLAzEQheMNrLVv_oC8-CKsTjbJZvNYWm9QtaA-hySb1Oh2d022gv_eLRV04DDMzMdhOAidEbgkAOKKECEkL0pFqNhDJ5QzGMSZ3EcjUhCSUcrkwd-BwiEaAYU8k4LRYzRJ6R2GooSLgozQfIof2y9X44fQhGaFp_WqjaF_W2PfRrx0MbRVsHhWb1I_DAPx7D43rumDrvFS98OySafoyOs6uclvH6PXm-uX2V22eLq9n00XWZfn0GfMgJHSk9JJcNJZ8MLSXHPtbO5tpUVJdUkMLxh448rS0Ep6U4EEKHzFKR2j851vp5PVtY-6sSGpLoa1jt-KyKLkQrKBu9hxqdu-7KIybfuRFAG1DVH9D5H-AEFgX0k</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Hung, Che-Lun</creator><creator>Yang, Don-Lin</creator><creator>Chung, Yeh-Ching</creator><creator>Hung, Ming-Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</title><author>Hung, Che-Lun ; Yang, Don-Lin ; Chung, Yeh-Ching ; Hung, Ming-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-4b0b99f18e90e9ec0f7c32a5aec2fcda783a81b5640fbe88b3d9fbd09006fd533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Memory organisation. Data processing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Che-Lun</creatorcontrib><creatorcontrib>Yang, Don-Lin</creatorcontrib><creatorcontrib>Chung, Yeh-Ching</creatorcontrib><creatorcontrib>Hung, Ming-Chuan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Che-Lun</au><au>Yang, Don-Lin</au><au>Chung, Yeh-Ching</au><au>Hung, Ming-Chuan</au><au>Ali, Moonis</au><au>Dapoigny, Richard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Mining Algorithm for Periodic Clustering Sequential Patterns</atitle><btitle>Advances in Applied Artificial Intelligence</btitle><date>2006</date><risdate>2006</risdate><spage>1299</spage><epage>1308</epage><pages>1299-1308</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540354530</isbn><isbn>9783540354536</isbn><eisbn>3540354549</eisbn><eisbn>9783540354543</eisbn><abstract>In knowledge discovery, data mining of time series data has many important applications. Especially, sequential patterns and periodic patterns, which evolved from the association rule, have been applied in many useful practices. This paper presents another useful concept, the periodic clustering sequential (PCS) pattern, which uses clustering to mine valuable information from temporal or serially ordered data in a period of time. For example, one can cluster patients according to symptoms of the illness under study, but this may just result in several clusters with specific symptoms for analyzing the distribution of patients. Adding time series analysis to the above investigation, we can examine the distribution of patients over the same or different seasons. For policymakers, the PCS pattern is more useful than traditional clustering result and provides a more effective support of decision-making.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11779568_137</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Applied Artificial Intelligence, 2006, p.1299-1308 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19685794 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Data processing. List processing. Character string processing Decision theory. Utility theory Exact sciences and technology Inference from stochastic processes time series analysis Mathematics Memory organisation. Data processing Operational research and scientific management Operational research. Management science Probability and statistics Sciences and techniques of general use Software Statistics |
title | A Novel Mining Algorithm for Periodic Clustering Sequential Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Mining%20Algorithm%20for%20Periodic%20Clustering%20Sequential%20Patterns&rft.btitle=Advances%20in%20Applied%20Artificial%20Intelligence&rft.au=Hung,%20Che-Lun&rft.date=2006&rft.spage=1299&rft.epage=1308&rft.pages=1299-1308&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540354530&rft.isbn_list=9783540354536&rft_id=info:doi/10.1007/11779568_137&rft_dat=%3Cpascalfrancis_sprin%3E19685794%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540354549&rft.eisbn_list=9783540354543&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |