Design and testing of a high temperature superconducting current lead

The high critical temperature and low thermal conductivity of the ceramic superconductor Y-Ba-Cu-O were utilized to reduce the Joule heating and the heat leak in a vapor-cooled current lead design of nominally 1-kA capacity. The lead consists of a lower superconducting part and an upper normal metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) 1991-03, Vol.27 (2), p.1861-1865
Hauptverfasser: Wu, J.L., Dederer, J.T., Eckels, P.W., Singh, S.K., Hull, J.R., Poeppel, R.B., Youngdahl, C.A., Singh, J.P., Lanagan, M.T., Balachandran, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1865
container_issue 2
container_start_page 1861
container_title IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)
container_volume 27
creator Wu, J.L.
Dederer, J.T.
Eckels, P.W.
Singh, S.K.
Hull, J.R.
Poeppel, R.B.
Youngdahl, C.A.
Singh, J.P.
Lanagan, M.T.
Balachandran, U.
description The high critical temperature and low thermal conductivity of the ceramic superconductor Y-Ba-Cu-O were utilized to reduce the Joule heating and the heat leak in a vapor-cooled current lead design of nominally 1-kA capacity. The lead consists of a lower superconducting part and an upper normal metal (copper) part. The superconducting part is an assembly of 20 rectangular bars fabricated from a composite of Y-Ba-Cu-O and Ag (15% vol.). This part is designed to operate below the critical temperature of the ceramic superconductor. The copper part, consisting of 20 copper wires, extends outside of the cryostat and interfaces to the room-temperature power supply. The lead was successfully tested in a liquid-helium cryostat for currents up to 2 kA. At the optimum operating currents of 1.7-1.8 kA, the helium boil-off measurements show heat leak reduction of approximately 40% from the conventional designs. Details of the design, fabrication issues, and the testing are presented.
doi_str_mv 10.1109/20.133559
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19587030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>133559</ieee_id><sourcerecordid>28868927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-41d35d2f0628f54b5ac160509fe340622beed3732c9d9c3e0ae7395bc69d80733</originalsourceid><addsrcrecordid>eNqNkbtPwzAQxi0EEqUwsDJFSCAxBM7P2CMq5SFVYoE5cp1LG5Q6xU4G_ntMU6kr03eP33260xFySeGeUjAPLCnnUpojMqFG0BxAmWMyAaA6N0KJU3IW41dKhaQwIfMnjM3KZ9ZXWY-xb_wq6-rMZutmtU6VzRaD7YeAWRxS6DpfDW5HuSEE9H3Woq3OyUlt24gXe52Sz-f5x-w1X7y_vM0eF7mT3PS5oBWXFatBMV1LsZTWUQUSTI1cpCJbIla84MyZyjiOYLHgRi6dMpWGgvMpuR59u7RpGV3To1unnTy6vpTKgBImQbcjtA3d95BuKjdNdNi21mM3xJJprbRhxT_AQisB_wEZ41zoBN6NoAtdjAHrchuajQ0_JYXy7z8lS7r7T2Jv9qY2OtvWwXrXxMOAkboADom7GrkGEQ_t0eQXHgCVog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28223348</pqid></control><display><type>article</type><title>Design and testing of a high temperature superconducting current lead</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, J.L. ; Dederer, J.T. ; Eckels, P.W. ; Singh, S.K. ; Hull, J.R. ; Poeppel, R.B. ; Youngdahl, C.A. ; Singh, J.P. ; Lanagan, M.T. ; Balachandran, U.</creator><creatorcontrib>Wu, J.L. ; Dederer, J.T. ; Eckels, P.W. ; Singh, S.K. ; Hull, J.R. ; Poeppel, R.B. ; Youngdahl, C.A. ; Singh, J.P. ; Lanagan, M.T. ; Balachandran, U.</creatorcontrib><description>The high critical temperature and low thermal conductivity of the ceramic superconductor Y-Ba-Cu-O were utilized to reduce the Joule heating and the heat leak in a vapor-cooled current lead design of nominally 1-kA capacity. The lead consists of a lower superconducting part and an upper normal metal (copper) part. The superconducting part is an assembly of 20 rectangular bars fabricated from a composite of Y-Ba-Cu-O and Ag (15% vol.). This part is designed to operate below the critical temperature of the ceramic superconductor. The copper part, consisting of 20 copper wires, extends outside of the cryostat and interfaces to the room-temperature power supply. The lead was successfully tested in a liquid-helium cryostat for currents up to 2 kA. At the optimum operating currents of 1.7-1.8 kA, the helium boil-off measurements show heat leak reduction of approximately 40% from the conventional designs. Details of the design, fabrication issues, and the testing are presented.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.133559</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ALKALINE EARTH METAL COMPOUNDS ; Applied sciences ; Assembly ; BARIUM COMPOUNDS ; BARIUM OXIDES ; Bars ; Ceramics ; CHALCOGENIDES ; COMPOSITE MATERIALS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONTROL EQUIPMENT ; COPPER ; COPPER COMPOUNDS ; COPPER OXIDES ; CRYOSTATS ; CURRENTS ; DESIGN ; ELECTRIC CONDUCTIVITY ; ELECTRIC CONDUCTORS ; ELECTRIC CURRENTS ; ELECTRIC HEATING ; Electrical engineering. Electrical power engineering ; ELECTRICAL PROPERTIES ; ELECTRONIC EQUIPMENT ; ELEMENTS ; Exact sciences and technology ; FABRICATION ; FLUIDS ; GASES ; GOLD ; HEATING ; HELIUM ; High temperature superconductors ; HIGH-TC SUPERCONDUCTORS ; JOULE HEATING ; MATERIALS ; METALS ; NONMETALS ; OXIDES ; OXYGEN COMPOUNDS ; PHYSICAL PROPERTIES ; PLASMA HEATING ; POWER SUPPLIES ; RARE GASES ; RESISTANCE HEATING ; Superconducting filaments and wires ; SUPERCONDUCTING WIRES ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; TESTING ; THERMAL CONDUCTIVITY ; THERMODYNAMIC PROPERTIES ; THERMOSTATS ; TRANSITION ELEMENT COMPOUNDS ; TRANSITION ELEMENTS ; TRANSITION TEMPERATURE ; Various equipment and components ; WIRES ; Yttrium barium copper oxide ; YTTRIUM COMPOUNDS 665412 -- Superconducting Devices-- (1992-) ; YTTRIUM OXIDES</subject><ispartof>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-03, Vol.27 (2), p.1861-1865</ispartof><rights>1991 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-41d35d2f0628f54b5ac160509fe340622beed3732c9d9c3e0ae7395bc69d80733</citedby><cites>FETCH-LOGICAL-c539t-41d35d2f0628f54b5ac160509fe340622beed3732c9d9c3e0ae7395bc69d80733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/133559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/133559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19587030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5690649$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, J.L.</creatorcontrib><creatorcontrib>Dederer, J.T.</creatorcontrib><creatorcontrib>Eckels, P.W.</creatorcontrib><creatorcontrib>Singh, S.K.</creatorcontrib><creatorcontrib>Hull, J.R.</creatorcontrib><creatorcontrib>Poeppel, R.B.</creatorcontrib><creatorcontrib>Youngdahl, C.A.</creatorcontrib><creatorcontrib>Singh, J.P.</creatorcontrib><creatorcontrib>Lanagan, M.T.</creatorcontrib><creatorcontrib>Balachandran, U.</creatorcontrib><title>Design and testing of a high temperature superconducting current lead</title><title>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TMAG</addtitle><description>The high critical temperature and low thermal conductivity of the ceramic superconductor Y-Ba-Cu-O were utilized to reduce the Joule heating and the heat leak in a vapor-cooled current lead design of nominally 1-kA capacity. The lead consists of a lower superconducting part and an upper normal metal (copper) part. The superconducting part is an assembly of 20 rectangular bars fabricated from a composite of Y-Ba-Cu-O and Ag (15% vol.). This part is designed to operate below the critical temperature of the ceramic superconductor. The copper part, consisting of 20 copper wires, extends outside of the cryostat and interfaces to the room-temperature power supply. The lead was successfully tested in a liquid-helium cryostat for currents up to 2 kA. At the optimum operating currents of 1.7-1.8 kA, the helium boil-off measurements show heat leak reduction of approximately 40% from the conventional designs. Details of the design, fabrication issues, and the testing are presented.</description><subject>ALKALINE EARTH METAL COMPOUNDS</subject><subject>Applied sciences</subject><subject>Assembly</subject><subject>BARIUM COMPOUNDS</subject><subject>BARIUM OXIDES</subject><subject>Bars</subject><subject>Ceramics</subject><subject>CHALCOGENIDES</subject><subject>COMPOSITE MATERIALS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONTROL EQUIPMENT</subject><subject>COPPER</subject><subject>COPPER COMPOUNDS</subject><subject>COPPER OXIDES</subject><subject>CRYOSTATS</subject><subject>CURRENTS</subject><subject>DESIGN</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC CONDUCTORS</subject><subject>ELECTRIC CURRENTS</subject><subject>ELECTRIC HEATING</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>FLUIDS</subject><subject>GASES</subject><subject>GOLD</subject><subject>HEATING</subject><subject>HELIUM</subject><subject>High temperature superconductors</subject><subject>HIGH-TC SUPERCONDUCTORS</subject><subject>JOULE HEATING</subject><subject>MATERIALS</subject><subject>METALS</subject><subject>NONMETALS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PLASMA HEATING</subject><subject>POWER SUPPLIES</subject><subject>RARE GASES</subject><subject>RESISTANCE HEATING</subject><subject>Superconducting filaments and wires</subject><subject>SUPERCONDUCTING WIRES</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>TESTING</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>THERMOSTATS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSITION ELEMENTS</subject><subject>TRANSITION TEMPERATURE</subject><subject>Various equipment and components</subject><subject>WIRES</subject><subject>Yttrium barium copper oxide</subject><subject>YTTRIUM COMPOUNDS 665412 -- Superconducting Devices-- (1992-)</subject><subject>YTTRIUM OXIDES</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqNkbtPwzAQxi0EEqUwsDJFSCAxBM7P2CMq5SFVYoE5cp1LG5Q6xU4G_ntMU6kr03eP33260xFySeGeUjAPLCnnUpojMqFG0BxAmWMyAaA6N0KJU3IW41dKhaQwIfMnjM3KZ9ZXWY-xb_wq6-rMZutmtU6VzRaD7YeAWRxS6DpfDW5HuSEE9H3Woq3OyUlt24gXe52Sz-f5x-w1X7y_vM0eF7mT3PS5oBWXFatBMV1LsZTWUQUSTI1cpCJbIla84MyZyjiOYLHgRi6dMpWGgvMpuR59u7RpGV3To1unnTy6vpTKgBImQbcjtA3d95BuKjdNdNi21mM3xJJprbRhxT_AQisB_wEZ41zoBN6NoAtdjAHrchuajQ0_JYXy7z8lS7r7T2Jv9qY2OtvWwXrXxMOAkboADom7GrkGEQ_t0eQXHgCVog</recordid><startdate>19910301</startdate><enddate>19910301</enddate><creator>Wu, J.L.</creator><creator>Dederer, J.T.</creator><creator>Eckels, P.W.</creator><creator>Singh, S.K.</creator><creator>Hull, J.R.</creator><creator>Poeppel, R.B.</creator><creator>Youngdahl, C.A.</creator><creator>Singh, J.P.</creator><creator>Lanagan, M.T.</creator><creator>Balachandran, U.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>19910301</creationdate><title>Design and testing of a high temperature superconducting current lead</title><author>Wu, J.L. ; Dederer, J.T. ; Eckels, P.W. ; Singh, S.K. ; Hull, J.R. ; Poeppel, R.B. ; Youngdahl, C.A. ; Singh, J.P. ; Lanagan, M.T. ; Balachandran, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-41d35d2f0628f54b5ac160509fe340622beed3732c9d9c3e0ae7395bc69d80733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>ALKALINE EARTH METAL COMPOUNDS</topic><topic>Applied sciences</topic><topic>Assembly</topic><topic>BARIUM COMPOUNDS</topic><topic>BARIUM OXIDES</topic><topic>Bars</topic><topic>Ceramics</topic><topic>CHALCOGENIDES</topic><topic>COMPOSITE MATERIALS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONTROL EQUIPMENT</topic><topic>COPPER</topic><topic>COPPER COMPOUNDS</topic><topic>COPPER OXIDES</topic><topic>CRYOSTATS</topic><topic>CURRENTS</topic><topic>DESIGN</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC CONDUCTORS</topic><topic>ELECTRIC CURRENTS</topic><topic>ELECTRIC HEATING</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>FLUIDS</topic><topic>GASES</topic><topic>GOLD</topic><topic>HEATING</topic><topic>HELIUM</topic><topic>High temperature superconductors</topic><topic>HIGH-TC SUPERCONDUCTORS</topic><topic>JOULE HEATING</topic><topic>MATERIALS</topic><topic>METALS</topic><topic>NONMETALS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PLASMA HEATING</topic><topic>POWER SUPPLIES</topic><topic>RARE GASES</topic><topic>RESISTANCE HEATING</topic><topic>Superconducting filaments and wires</topic><topic>SUPERCONDUCTING WIRES</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>TESTING</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>THERMOSTATS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSITION ELEMENTS</topic><topic>TRANSITION TEMPERATURE</topic><topic>Various equipment and components</topic><topic>WIRES</topic><topic>Yttrium barium copper oxide</topic><topic>YTTRIUM COMPOUNDS 665412 -- Superconducting Devices-- (1992-)</topic><topic>YTTRIUM OXIDES</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, J.L.</creatorcontrib><creatorcontrib>Dederer, J.T.</creatorcontrib><creatorcontrib>Eckels, P.W.</creatorcontrib><creatorcontrib>Singh, S.K.</creatorcontrib><creatorcontrib>Hull, J.R.</creatorcontrib><creatorcontrib>Poeppel, R.B.</creatorcontrib><creatorcontrib>Youngdahl, C.A.</creatorcontrib><creatorcontrib>Singh, J.P.</creatorcontrib><creatorcontrib>Lanagan, M.T.</creatorcontrib><creatorcontrib>Balachandran, U.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, J.L.</au><au>Dederer, J.T.</au><au>Eckels, P.W.</au><au>Singh, S.K.</au><au>Hull, J.R.</au><au>Poeppel, R.B.</au><au>Youngdahl, C.A.</au><au>Singh, J.P.</au><au>Lanagan, M.T.</au><au>Balachandran, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and testing of a high temperature superconducting current lead</atitle><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TMAG</stitle><date>1991-03-01</date><risdate>1991</risdate><volume>27</volume><issue>2</issue><spage>1861</spage><epage>1865</epage><pages>1861-1865</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The high critical temperature and low thermal conductivity of the ceramic superconductor Y-Ba-Cu-O were utilized to reduce the Joule heating and the heat leak in a vapor-cooled current lead design of nominally 1-kA capacity. The lead consists of a lower superconducting part and an upper normal metal (copper) part. The superconducting part is an assembly of 20 rectangular bars fabricated from a composite of Y-Ba-Cu-O and Ag (15% vol.). This part is designed to operate below the critical temperature of the ceramic superconductor. The copper part, consisting of 20 copper wires, extends outside of the cryostat and interfaces to the room-temperature power supply. The lead was successfully tested in a liquid-helium cryostat for currents up to 2 kA. At the optimum operating currents of 1.7-1.8 kA, the helium boil-off measurements show heat leak reduction of approximately 40% from the conventional designs. Details of the design, fabrication issues, and the testing are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.133559</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-03, Vol.27 (2), p.1861-1865
issn 0018-9464
1941-0069
language eng
recordid cdi_pascalfrancis_primary_19587030
source IEEE Electronic Library (IEL)
subjects ALKALINE EARTH METAL COMPOUNDS
Applied sciences
Assembly
BARIUM COMPOUNDS
BARIUM OXIDES
Bars
Ceramics
CHALCOGENIDES
COMPOSITE MATERIALS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONTROL EQUIPMENT
COPPER
COPPER COMPOUNDS
COPPER OXIDES
CRYOSTATS
CURRENTS
DESIGN
ELECTRIC CONDUCTIVITY
ELECTRIC CONDUCTORS
ELECTRIC CURRENTS
ELECTRIC HEATING
Electrical engineering. Electrical power engineering
ELECTRICAL PROPERTIES
ELECTRONIC EQUIPMENT
ELEMENTS
Exact sciences and technology
FABRICATION
FLUIDS
GASES
GOLD
HEATING
HELIUM
High temperature superconductors
HIGH-TC SUPERCONDUCTORS
JOULE HEATING
MATERIALS
METALS
NONMETALS
OXIDES
OXYGEN COMPOUNDS
PHYSICAL PROPERTIES
PLASMA HEATING
POWER SUPPLIES
RARE GASES
RESISTANCE HEATING
Superconducting filaments and wires
SUPERCONDUCTING WIRES
SUPERCONDUCTIVITY
SUPERCONDUCTORS
TESTING
THERMAL CONDUCTIVITY
THERMODYNAMIC PROPERTIES
THERMOSTATS
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS
TRANSITION TEMPERATURE
Various equipment and components
WIRES
Yttrium barium copper oxide
YTTRIUM COMPOUNDS 665412 -- Superconducting Devices-- (1992-)
YTTRIUM OXIDES
title Design and testing of a high temperature superconducting current lead
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20testing%20of%20a%20high%20temperature%20superconducting%20current%20lead&rft.jtitle=IEEE%20Transactions%20on%20Magnetics%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Wu,%20J.L.&rft.date=1991-03-01&rft.volume=27&rft.issue=2&rft.spage=1861&rft.epage=1865&rft.pages=1861-1865&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.133559&rft_dat=%3Cproquest_RIE%3E28868927%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28223348&rft_id=info:pmid/&rft_ieee_id=133559&rfr_iscdi=true