Classification of rotated and scaled textured images using Gaussian Markov random field models
Consideration is given to the problem of classifying a test textured image that is obtained from one of C possible parent texture classes, after possibly applying unknown rotation and scale changes to the parent texture. The training texture images (parent classes) are modeled by Gaussian Markov ran...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1991-02, Vol.13 (2), p.192-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 192 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 13 |
creator | Cohen, F.S. Fan, Z. Patel, M.A. |
description | Consideration is given to the problem of classifying a test textured image that is obtained from one of C possible parent texture classes, after possibly applying unknown rotation and scale changes to the parent texture. The training texture images (parent classes) are modeled by Gaussian Markov random fields (GMRFs). To classify a rotated and scaled test texture, the rotation and scale changes are incorporated in the texture model through an appropriate transformation of the power spectral density of the GMRF. For the rotated and scaled image, a bona fide likelihood function that shows the explicit dependence of the likelihood function on the GMRF parameters, as well as on the rotation and scale parameters, is derived. Although, in general, the scaled and/or rotated texture does not correspond to a finite-order GMRF, it is possible nonetheless to write down a likelihood function for the image data. The likelihood function of the discrete Fourier transform of the image data corresponds to that of a white nonstationary Gaussian random field, with the variance at each pixel (i,j) being a known function of the rotation, the scale, the GMRF model parameters, and (i,j). The variance is an explicit function of the appropriately sampled power spectral density of the GMRF. The estimation of the rotation and scale parameters is performed in the frequency domain by maximizing the likelihood function associated with the discrete Fourier transform of the image data. Cramer-Rao error bounds on the scale and rotation estimates are easily computed. A modified Bayes decision rule is used to classify a given test image into one of C possible texture classes. The classification power of the method is demonstrated through experimental results on natural textures from the Brodatz album.< > |
doi_str_mv | 10.1109/34.67648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19569975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>67648</ieee_id><sourcerecordid>28199741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-db56de495835fc96ba911f18eeb7a776e48d00e5cc2c8a8541599519672330c53</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqUgsbJ5AbGk2LGd2COqoCAVscBK5DrnypDExU4Q_HtcUsHIdE-6797dPYROKZlRStQV47OiLLjcQxOqmMqYYGofTQgt8kzKXB6ioxhfCaFcEDZBL_NGx-isM7p3vsPe4uB73UONdVfjaHSTZA-f_RCScK1eQ8RDdN0aL_SQRnWHH3R48x84pAnfYuugqXHra2jiMTqwuolwsqtT9Hx78zS_y5aPi_v59TIznNA-q1eiqIErIZmwRhUrrSi1VAKsSl2WBXBZEwLCmNxILQWnQilBVVHmjBEj2BRdjL6b4N8HiH3VumigaXQHfohVLqlSJaf_g4IylpMygZcjaIKPMYCtNiF9H74qSqpt0hXj1U_SCT3feeptXjblYFz845Uo0vLtkWcj5wDgtz16fAOWlIVV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25133207</pqid></control><display><type>article</type><title>Classification of rotated and scaled textured images using Gaussian Markov random field models</title><source>IEEE/IET Electronic Library</source><creator>Cohen, F.S. ; Fan, Z. ; Patel, M.A.</creator><creatorcontrib>Cohen, F.S. ; Fan, Z. ; Patel, M.A.</creatorcontrib><description>Consideration is given to the problem of classifying a test textured image that is obtained from one of C possible parent texture classes, after possibly applying unknown rotation and scale changes to the parent texture. The training texture images (parent classes) are modeled by Gaussian Markov random fields (GMRFs). To classify a rotated and scaled test texture, the rotation and scale changes are incorporated in the texture model through an appropriate transformation of the power spectral density of the GMRF. For the rotated and scaled image, a bona fide likelihood function that shows the explicit dependence of the likelihood function on the GMRF parameters, as well as on the rotation and scale parameters, is derived. Although, in general, the scaled and/or rotated texture does not correspond to a finite-order GMRF, it is possible nonetheless to write down a likelihood function for the image data. The likelihood function of the discrete Fourier transform of the image data corresponds to that of a white nonstationary Gaussian random field, with the variance at each pixel (i,j) being a known function of the rotation, the scale, the GMRF model parameters, and (i,j). The variance is an explicit function of the appropriately sampled power spectral density of the GMRF. The estimation of the rotation and scale parameters is performed in the frequency domain by maximizing the likelihood function associated with the discrete Fourier transform of the image data. Cramer-Rao error bounds on the scale and rotation estimates are easily computed. A modified Bayes decision rule is used to classify a given test image into one of C possible texture classes. The classification power of the method is demonstrated through experimental results on natural textures from the Brodatz album.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.67648</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Discrete Fourier transforms ; Exact sciences and technology ; Fixtures ; Frequency domain analysis ; Frequency estimation ; Inspection ; Markov random fields ; Object recognition ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Stochastic processes ; Testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1991-02, Vol.13 (2), p.192-202</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-db56de495835fc96ba911f18eeb7a776e48d00e5cc2c8a8541599519672330c53</citedby><cites>FETCH-LOGICAL-c401t-db56de495835fc96ba911f18eeb7a776e48d00e5cc2c8a8541599519672330c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/67648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/67648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19569975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, F.S.</creatorcontrib><creatorcontrib>Fan, Z.</creatorcontrib><creatorcontrib>Patel, M.A.</creatorcontrib><title>Classification of rotated and scaled textured images using Gaussian Markov random field models</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Consideration is given to the problem of classifying a test textured image that is obtained from one of C possible parent texture classes, after possibly applying unknown rotation and scale changes to the parent texture. The training texture images (parent classes) are modeled by Gaussian Markov random fields (GMRFs). To classify a rotated and scaled test texture, the rotation and scale changes are incorporated in the texture model through an appropriate transformation of the power spectral density of the GMRF. For the rotated and scaled image, a bona fide likelihood function that shows the explicit dependence of the likelihood function on the GMRF parameters, as well as on the rotation and scale parameters, is derived. Although, in general, the scaled and/or rotated texture does not correspond to a finite-order GMRF, it is possible nonetheless to write down a likelihood function for the image data. The likelihood function of the discrete Fourier transform of the image data corresponds to that of a white nonstationary Gaussian random field, with the variance at each pixel (i,j) being a known function of the rotation, the scale, the GMRF model parameters, and (i,j). The variance is an explicit function of the appropriately sampled power spectral density of the GMRF. The estimation of the rotation and scale parameters is performed in the frequency domain by maximizing the likelihood function associated with the discrete Fourier transform of the image data. Cramer-Rao error bounds on the scale and rotation estimates are easily computed. A modified Bayes decision rule is used to classify a given test image into one of C possible texture classes. The classification power of the method is demonstrated through experimental results on natural textures from the Brodatz album.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Fourier transforms</subject><subject>Exact sciences and technology</subject><subject>Fixtures</subject><subject>Frequency domain analysis</subject><subject>Frequency estimation</subject><subject>Inspection</subject><subject>Markov random fields</subject><subject>Object recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqUgsbJ5AbGk2LGd2COqoCAVscBK5DrnypDExU4Q_HtcUsHIdE-6797dPYROKZlRStQV47OiLLjcQxOqmMqYYGofTQgt8kzKXB6ioxhfCaFcEDZBL_NGx-isM7p3vsPe4uB73UONdVfjaHSTZA-f_RCScK1eQ8RDdN0aL_SQRnWHH3R48x84pAnfYuugqXHra2jiMTqwuolwsqtT9Hx78zS_y5aPi_v59TIznNA-q1eiqIErIZmwRhUrrSi1VAKsSl2WBXBZEwLCmNxILQWnQilBVVHmjBEj2BRdjL6b4N8HiH3VumigaXQHfohVLqlSJaf_g4IylpMygZcjaIKPMYCtNiF9H74qSqpt0hXj1U_SCT3feeptXjblYFz845Uo0vLtkWcj5wDgtz16fAOWlIVV</recordid><startdate>19910201</startdate><enddate>19910201</enddate><creator>Cohen, F.S.</creator><creator>Fan, Z.</creator><creator>Patel, M.A.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910201</creationdate><title>Classification of rotated and scaled textured images using Gaussian Markov random field models</title><author>Cohen, F.S. ; Fan, Z. ; Patel, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-db56de495835fc96ba911f18eeb7a776e48d00e5cc2c8a8541599519672330c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Fourier transforms</topic><topic>Exact sciences and technology</topic><topic>Fixtures</topic><topic>Frequency domain analysis</topic><topic>Frequency estimation</topic><topic>Inspection</topic><topic>Markov random fields</topic><topic>Object recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, F.S.</creatorcontrib><creatorcontrib>Fan, Z.</creatorcontrib><creatorcontrib>Patel, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohen, F.S.</au><au>Fan, Z.</au><au>Patel, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of rotated and scaled textured images using Gaussian Markov random field models</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1991-02-01</date><risdate>1991</risdate><volume>13</volume><issue>2</issue><spage>192</spage><epage>202</epage><pages>192-202</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Consideration is given to the problem of classifying a test textured image that is obtained from one of C possible parent texture classes, after possibly applying unknown rotation and scale changes to the parent texture. The training texture images (parent classes) are modeled by Gaussian Markov random fields (GMRFs). To classify a rotated and scaled test texture, the rotation and scale changes are incorporated in the texture model through an appropriate transformation of the power spectral density of the GMRF. For the rotated and scaled image, a bona fide likelihood function that shows the explicit dependence of the likelihood function on the GMRF parameters, as well as on the rotation and scale parameters, is derived. Although, in general, the scaled and/or rotated texture does not correspond to a finite-order GMRF, it is possible nonetheless to write down a likelihood function for the image data. The likelihood function of the discrete Fourier transform of the image data corresponds to that of a white nonstationary Gaussian random field, with the variance at each pixel (i,j) being a known function of the rotation, the scale, the GMRF model parameters, and (i,j). The variance is an explicit function of the appropriately sampled power spectral density of the GMRF. The estimation of the rotation and scale parameters is performed in the frequency domain by maximizing the likelihood function associated with the discrete Fourier transform of the image data. Cramer-Rao error bounds on the scale and rotation estimates are easily computed. A modified Bayes decision rule is used to classify a given test image into one of C possible texture classes. The classification power of the method is demonstrated through experimental results on natural textures from the Brodatz album.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.67648</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1991-02, Vol.13 (2), p.192-202 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pascalfrancis_primary_19569975 |
source | IEEE/IET Electronic Library |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Discrete Fourier transforms Exact sciences and technology Fixtures Frequency domain analysis Frequency estimation Inspection Markov random fields Object recognition Pattern recognition. Digital image processing. Computational geometry Pixel Stochastic processes Testing |
title | Classification of rotated and scaled textured images using Gaussian Markov random field models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20rotated%20and%20scaled%20textured%20images%20using%20Gaussian%20Markov%20random%20field%20models&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Cohen,%20F.S.&rft.date=1991-02-01&rft.volume=13&rft.issue=2&rft.spage=192&rft.epage=202&rft.pages=192-202&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.67648&rft_dat=%3Cproquest_RIE%3E28199741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25133207&rft_id=info:pmid/&rft_ieee_id=67648&rfr_iscdi=true |