The equivariant inverse problem and the uniqueness of the Yang–Mills equations
The equivariant inverse problem for Yang–Mills‐type Euler–Lagrange expressions is solved in the affirmative. This leads to a proof of the uniqueness of the Yang–Mills equations.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1989-10, Vol.30 (10), p.2382-2387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2387 |
---|---|
container_issue | 10 |
container_start_page | 2382 |
container_title | Journal of mathematical physics |
container_volume | 30 |
creator | López, M. C. Noriega, R. J. Schifini, C. G. |
description | The equivariant inverse problem for Yang–Mills‐type Euler–Lagrange expressions is solved in the affirmative. This leads to a proof of the uniqueness of the Yang–Mills equations. |
doi_str_mv | 10.1063/1.528568 |
format | Article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19523022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3abdda4782a1c78863cb1e6a3b27206bf20ea6be92a9f89663413c58505dd0373</originalsourceid><addsrcrecordid>eNp90M9Kw0AQBvBFFKxV8BFyEfSQun-ym81RilWhood68BQmm11dSTfpbhrw5jv4hj6JaSP1IHgaGH58w3wInRI8IViwSzLhVHIh99CIYJnFqeByH40wpjSmiZSH6CiEN4wJkUkyQo-LVx3p1dp24C24NrKu0z7oqPF1UellBK6M2t6snV2ttdMhRLXZbp7BvXx9fN7bqgqbCGht7cIxOjBQBX3yM8foaXa9mN7G84ebu-nVPFaM8jZmUJQlJKmkQFQqpWCqIFoAK2hKsSgMxRpEoTMKmZGZECwhTHHJMS9LzFI2RudDrvJ1CF6bvPF2Cf49JzjfNJGTfGiip2cDbSAoqIwHp2z49RmnrK-ndxeDC8q22292pqv9Li9vSvOf_XP_G0xuejs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The equivariant inverse problem and the uniqueness of the Yang–Mills equations</title><source>AIP Digital Archive</source><creator>López, M. C. ; Noriega, R. J. ; Schifini, C. G.</creator><creatorcontrib>López, M. C. ; Noriega, R. J. ; Schifini, C. G.</creatorcontrib><description>The equivariant inverse problem for Yang–Mills‐type Euler–Lagrange expressions is solved in the affirmative. This leads to a proof of the uniqueness of the Yang–Mills equations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.528568</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Physics ; Theory of quantized fields</subject><ispartof>Journal of mathematical physics, 1989-10, Vol.30 (10), p.2382-2387</ispartof><rights>American Institute of Physics</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3abdda4782a1c78863cb1e6a3b27206bf20ea6be92a9f89663413c58505dd0373</citedby><cites>FETCH-LOGICAL-c325t-3abdda4782a1c78863cb1e6a3b27206bf20ea6be92a9f89663413c58505dd0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.528568$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19523022$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>López, M. C.</creatorcontrib><creatorcontrib>Noriega, R. J.</creatorcontrib><creatorcontrib>Schifini, C. G.</creatorcontrib><title>The equivariant inverse problem and the uniqueness of the Yang–Mills equations</title><title>Journal of mathematical physics</title><description>The equivariant inverse problem for Yang–Mills‐type Euler–Lagrange expressions is solved in the affirmative. This leads to a proof of the uniqueness of the Yang–Mills equations.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Theory of quantized fields</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp90M9Kw0AQBvBFFKxV8BFyEfSQun-ym81RilWhood68BQmm11dSTfpbhrw5jv4hj6JaSP1IHgaGH58w3wInRI8IViwSzLhVHIh99CIYJnFqeByH40wpjSmiZSH6CiEN4wJkUkyQo-LVx3p1dp24C24NrKu0z7oqPF1UellBK6M2t6snV2ttdMhRLXZbp7BvXx9fN7bqgqbCGht7cIxOjBQBX3yM8foaXa9mN7G84ebu-nVPFaM8jZmUJQlJKmkQFQqpWCqIFoAK2hKsSgMxRpEoTMKmZGZECwhTHHJMS9LzFI2RudDrvJ1CF6bvPF2Cf49JzjfNJGTfGiip2cDbSAoqIwHp2z49RmnrK-ndxeDC8q22292pqv9Li9vSvOf_XP_G0xuejs</recordid><startdate>19891001</startdate><enddate>19891001</enddate><creator>López, M. C.</creator><creator>Noriega, R. J.</creator><creator>Schifini, C. G.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19891001</creationdate><title>The equivariant inverse problem and the uniqueness of the Yang–Mills equations</title><author>López, M. C. ; Noriega, R. J. ; Schifini, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3abdda4782a1c78863cb1e6a3b27206bf20ea6be92a9f89663413c58505dd0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Theory of quantized fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, M. C.</creatorcontrib><creatorcontrib>Noriega, R. J.</creatorcontrib><creatorcontrib>Schifini, C. G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, M. C.</au><au>Noriega, R. J.</au><au>Schifini, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The equivariant inverse problem and the uniqueness of the Yang–Mills equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>1989-10-01</date><risdate>1989</risdate><volume>30</volume><issue>10</issue><spage>2382</spage><epage>2387</epage><pages>2382-2387</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The equivariant inverse problem for Yang–Mills‐type Euler–Lagrange expressions is solved in the affirmative. This leads to a proof of the uniqueness of the Yang–Mills equations.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.528568</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1989-10, Vol.30 (10), p.2382-2387 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_19523022 |
source | AIP Digital Archive |
subjects | Classical and quantum physics: mechanics and fields Exact sciences and technology Physics Theory of quantized fields |
title | The equivariant inverse problem and the uniqueness of the Yang–Mills equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20equivariant%20inverse%20problem%20and%20the%20uniqueness%20of%20the%20Yang%E2%80%93Mills%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=L%C3%B3pez,%20M.%20C.&rft.date=1989-10-01&rft.volume=30&rft.issue=10&rft.spage=2382&rft.epage=2387&rft.pages=2382-2387&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.528568&rft_dat=%3Cscitation_pasca%3Ejmp%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |