Comment on Slip Velocity at a Fluid-Solid Boundary
The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elemen...
Gespeichert in:
Veröffentlicht in: | Physics and chemistry of liquids 1990-06, Vol.21 (3), p.147-156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 3 |
container_start_page | 147 |
container_title | Physics and chemistry of liquids |
container_volume | 21 |
creator | Paranjape, B. V. Robson, R. E. |
description | The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached.
A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere. |
doi_str_mv | 10.1080/00319109008028477 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_19406711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19406711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWFd_gLdcPFZn2vQj4EUXV4UFD6teyzRJIZI2S9JF9t_bpYoH8TQM8zwz8zJ2iXCNUMMNQI4SQcLUZLWoqiOWIGQyBVHgMUsO83QCxCk7i_EDIMOywIRlS9_3Zhi5H_jG2S1_N84rO-45jZz4yu2sTjfeWc3v_W7QFPbn7KQjF83Fd12wt9XD6_IpXb88Pi_v1qnKs3pMMe8KgYKIFApZtbqVpNq20rrVqBSVpgYpBamCdN1VpGWmStRFLgpTGqHzBcN5rwo-xmC6ZhtsPz3QIDSH0M2f0JNzNTtbiopcF2hQNv6KUkBZIU7c7czZofOhp08fnG5G2jsffqT8_zNfNZ5o9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><source>Taylor & Francis Journals Complete</source><creator>Paranjape, B. V. ; Robson, R. E.</creator><creatorcontrib>Paranjape, B. V. ; Robson, R. E.</creatorcontrib><description>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached.
A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</description><identifier>ISSN: 0031-9104</identifier><identifier>EISSN: 1029-0451</identifier><identifier>DOI: 10.1080/00319109008028477</identifier><identifier>CODEN: PCLQAC</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Kinetic theory ; Laminar flows ; Physics ; shear stress</subject><ispartof>Physics and chemistry of liquids, 1990-06, Vol.21 (3), p.147-156</ispartof><rights>Copyright Taylor & Francis Group, LLC 1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</citedby><cites>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00319109008028477$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00319109008028477$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19406711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paranjape, B. V.</creatorcontrib><creatorcontrib>Robson, R. E.</creatorcontrib><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><title>Physics and chemistry of liquids</title><description>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached.
A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinetic theory</subject><subject>Laminar flows</subject><subject>Physics</subject><subject>shear stress</subject><issn>0031-9104</issn><issn>1029-0451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWFd_gLdcPFZn2vQj4EUXV4UFD6teyzRJIZI2S9JF9t_bpYoH8TQM8zwz8zJ2iXCNUMMNQI4SQcLUZLWoqiOWIGQyBVHgMUsO83QCxCk7i_EDIMOywIRlS9_3Zhi5H_jG2S1_N84rO-45jZz4yu2sTjfeWc3v_W7QFPbn7KQjF83Fd12wt9XD6_IpXb88Pi_v1qnKs3pMMe8KgYKIFApZtbqVpNq20rrVqBSVpgYpBamCdN1VpGWmStRFLgpTGqHzBcN5rwo-xmC6ZhtsPz3QIDSH0M2f0JNzNTtbiopcF2hQNv6KUkBZIU7c7czZofOhp08fnG5G2jsffqT8_zNfNZ5o9g</recordid><startdate>19900601</startdate><enddate>19900601</enddate><creator>Paranjape, B. V.</creator><creator>Robson, R. E.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900601</creationdate><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><author>Paranjape, B. V. ; Robson, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinetic theory</topic><topic>Laminar flows</topic><topic>Physics</topic><topic>shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paranjape, B. V.</creatorcontrib><creatorcontrib>Robson, R. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics and chemistry of liquids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paranjape, B. V.</au><au>Robson, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on Slip Velocity at a Fluid-Solid Boundary</atitle><jtitle>Physics and chemistry of liquids</jtitle><date>1990-06-01</date><risdate>1990</risdate><volume>21</volume><issue>3</issue><spage>147</spage><epage>156</epage><pages>147-156</pages><issn>0031-9104</issn><eissn>1029-0451</eissn><coden>PCLQAC</coden><abstract>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached.
A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00319109008028477</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9104 |
ispartof | Physics and chemistry of liquids, 1990-06, Vol.21 (3), p.147-156 |
issn | 0031-9104 1029-0451 |
language | eng |
recordid | cdi_pascalfrancis_primary_19406711 |
source | Taylor & Francis Journals Complete |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Kinetic theory Laminar flows Physics shear stress |
title | Comment on Slip Velocity at a Fluid-Solid Boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20Slip%20Velocity%20at%20a%20Fluid-Solid%20Boundary&rft.jtitle=Physics%20and%20chemistry%20of%20liquids&rft.au=Paranjape,%20B.%20V.&rft.date=1990-06-01&rft.volume=21&rft.issue=3&rft.spage=147&rft.epage=156&rft.pages=147-156&rft.issn=0031-9104&rft.eissn=1029-0451&rft.coden=PCLQAC&rft_id=info:doi/10.1080/00319109008028477&rft_dat=%3Cpascalfrancis_infor%3E19406711%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |