Comment on Slip Velocity at a Fluid-Solid Boundary

The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of liquids 1990-06, Vol.21 (3), p.147-156
Hauptverfasser: Paranjape, B. V., Robson, R. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue 3
container_start_page 147
container_title Physics and chemistry of liquids
container_volume 21
creator Paranjape, B. V.
Robson, R. E.
description The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached. A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.
doi_str_mv 10.1080/00319109008028477
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_19406711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19406711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWFd_gLdcPFZn2vQj4EUXV4UFD6teyzRJIZI2S9JF9t_bpYoH8TQM8zwz8zJ2iXCNUMMNQI4SQcLUZLWoqiOWIGQyBVHgMUsO83QCxCk7i_EDIMOywIRlS9_3Zhi5H_jG2S1_N84rO-45jZz4yu2sTjfeWc3v_W7QFPbn7KQjF83Fd12wt9XD6_IpXb88Pi_v1qnKs3pMMe8KgYKIFApZtbqVpNq20rrVqBSVpgYpBamCdN1VpGWmStRFLgpTGqHzBcN5rwo-xmC6ZhtsPz3QIDSH0M2f0JNzNTtbiopcF2hQNv6KUkBZIU7c7czZofOhp08fnG5G2jsffqT8_zNfNZ5o9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><source>Taylor &amp; Francis Journals Complete</source><creator>Paranjape, B. V. ; Robson, R. E.</creator><creatorcontrib>Paranjape, B. V. ; Robson, R. E.</creatorcontrib><description>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached. A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</description><identifier>ISSN: 0031-9104</identifier><identifier>EISSN: 1029-0451</identifier><identifier>DOI: 10.1080/00319109008028477</identifier><identifier>CODEN: PCLQAC</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Kinetic theory ; Laminar flows ; Physics ; shear stress</subject><ispartof>Physics and chemistry of liquids, 1990-06, Vol.21 (3), p.147-156</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</citedby><cites>FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00319109008028477$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00319109008028477$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19406711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paranjape, B. V.</creatorcontrib><creatorcontrib>Robson, R. E.</creatorcontrib><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><title>Physics and chemistry of liquids</title><description>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached. A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinetic theory</subject><subject>Laminar flows</subject><subject>Physics</subject><subject>shear stress</subject><issn>0031-9104</issn><issn>1029-0451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWFd_gLdcPFZn2vQj4EUXV4UFD6teyzRJIZI2S9JF9t_bpYoH8TQM8zwz8zJ2iXCNUMMNQI4SQcLUZLWoqiOWIGQyBVHgMUsO83QCxCk7i_EDIMOywIRlS9_3Zhi5H_jG2S1_N84rO-45jZz4yu2sTjfeWc3v_W7QFPbn7KQjF83Fd12wt9XD6_IpXb88Pi_v1qnKs3pMMe8KgYKIFApZtbqVpNq20rrVqBSVpgYpBamCdN1VpGWmStRFLgpTGqHzBcN5rwo-xmC6ZhtsPz3QIDSH0M2f0JNzNTtbiopcF2hQNv6KUkBZIU7c7czZofOhp08fnG5G2jsffqT8_zNfNZ5o9g</recordid><startdate>19900601</startdate><enddate>19900601</enddate><creator>Paranjape, B. V.</creator><creator>Robson, R. E.</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900601</creationdate><title>Comment on Slip Velocity at a Fluid-Solid Boundary</title><author>Paranjape, B. V. ; Robson, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-13f5414aaac1497bdb9acbb7ddbd1cca6e80994ac5ad8f7ad92c61d5345e6e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinetic theory</topic><topic>Laminar flows</topic><topic>Physics</topic><topic>shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paranjape, B. V.</creatorcontrib><creatorcontrib>Robson, R. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics and chemistry of liquids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paranjape, B. V.</au><au>Robson, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on Slip Velocity at a Fluid-Solid Boundary</atitle><jtitle>Physics and chemistry of liquids</jtitle><date>1990-06-01</date><risdate>1990</risdate><volume>21</volume><issue>3</issue><spage>147</spage><epage>156</epage><pages>147-156</pages><issn>0031-9104</issn><eissn>1029-0451</eissn><coden>PCLQAC</coden><abstract>The assumption that fluid velocity near a solid boundary is equal to boundary velocity, i.e., the no-slip assumption, is argued to be physically untenable. The assumption is critically examined firstly for dilute gases and we show that the no-slip assumption is incompatible with even the most elementary kinetic theoretical considerations. The effective viscosity coefficient relating shear stress exerted by the solid on the gas to the velocity gradient in the gas differs from the viscosity coefficient applicable to the bulk of the gas. Qualitative arguments are used for liquids and similar conclusions are reached. A macroscopic model, applicable to both gases and liquids, consistent with the physical requirement of nonzero slip, is then proposed. The shear stress at the boundary is then interpreted as a frictional force proportional to the slip velocity and viscosity is assumed to have the same constant value everywhere.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00319109008028477</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9104
ispartof Physics and chemistry of liquids, 1990-06, Vol.21 (3), p.147-156
issn 0031-9104
1029-0451
language eng
recordid cdi_pascalfrancis_primary_19406711
source Taylor & Francis Journals Complete
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Kinetic theory
Laminar flows
Physics
shear stress
title Comment on Slip Velocity at a Fluid-Solid Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20Slip%20Velocity%20at%20a%20Fluid-Solid%20Boundary&rft.jtitle=Physics%20and%20chemistry%20of%20liquids&rft.au=Paranjape,%20B.%20V.&rft.date=1990-06-01&rft.volume=21&rft.issue=3&rft.spage=147&rft.epage=156&rft.pages=147-156&rft.issn=0031-9104&rft.eissn=1029-0451&rft.coden=PCLQAC&rft_id=info:doi/10.1080/00319109008028477&rft_dat=%3Cpascalfrancis_infor%3E19406711%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true