Parametric GLRT for Multichannel Adaptive Signal Detection
This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2007-11, Vol.55 (11), p.5351-5360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5360 |
---|---|
container_issue | 11 |
container_start_page | 5351 |
container_title | IEEE transactions on signal processing |
container_volume | 55 |
creator | Kwang June Sohn Hongbin Li Himed, B. |
description | This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general. |
doi_str_mv | 10.1109/TSP.2007.896068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19186257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4355333</ieee_id><sourcerecordid>2335835701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxYMoqNWzBy9BUE9pd7Lf3orfULHYCt7CupnoSprU3VTwv3dLRMGDc5mB-b03zEuSAyBDAKJH89l0mBMih0oLItRGsgOaQUaYFJtxJpxmXMmn7WQ3hDdCgDEtdpKzqfFmgZ13Nr2ePMzTqvXp3arunH01TYN1Oi7NsnMfmM7cS2Pq9AI7tJ1rm71kqzJ1wP3vPkgery7n5zfZ5P769nw8ySxV0GUGEHNDlWQVKPWs8lzTUjIUFCzXuQCkGlFXvHy2kktLKoqGlADCslxaoIPktPdd-vZ9haErFi5YrGvTYLsKhVKaSkm1iuTJvyRlmmgNMoJHf8C3duXjd9FNMJ5LKXWERj1kfRuCx6pYercw_rMAUqwjL2LkxTryoo88Ko6_bU2wpq68aawLvzINSuR8ff6w5xwi_qwZ5ZzG-gKEg4eU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864527779</pqid></control><display><type>article</type><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Kwang June Sohn ; Hongbin Li ; Himed, B.</creator><creatorcontrib>Kwang June Sohn ; Hongbin Li ; Himed, B.</creatorcontrib><description>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.896068</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive signal detection ; Applied sciences ; Asymptotic properties ; Closed-form solution ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Disturbances ; Estimators ; Exact sciences and technology ; Exact solutions ; Generalized likelihood ratio test (GLRT) ; Information, signal and communications theory ; Matched filters ; maximum likelihood (ML) parameter estimation ; Maximum likelihood detection ; Maximum likelihood estimation ; Multichannel ; multichannel signal detection ; Parameter estimation ; parametric models ; Signal and communications theory ; Signal detection ; Signal, noise ; space-time adaptive processing (STAP) ; Studies ; Telecommunications and information theory ; Testing ; Training ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 2007-11, Vol.55 (11), p.5351-5360</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</citedby><cites>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4355333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4355333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19186257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwang June Sohn</creatorcontrib><creatorcontrib>Hongbin Li</creatorcontrib><creatorcontrib>Himed, B.</creatorcontrib><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</description><subject>Adaptive signal detection</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Closed-form solution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Disturbances</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Generalized likelihood ratio test (GLRT)</subject><subject>Information, signal and communications theory</subject><subject>Matched filters</subject><subject>maximum likelihood (ML) parameter estimation</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Multichannel</subject><subject>multichannel signal detection</subject><subject>Parameter estimation</subject><subject>parametric models</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal, noise</subject><subject>space-time adaptive processing (STAP)</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Training</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM1Lw0AQxYMoqNWzBy9BUE9pd7Lf3orfULHYCt7CupnoSprU3VTwv3dLRMGDc5mB-b03zEuSAyBDAKJH89l0mBMih0oLItRGsgOaQUaYFJtxJpxmXMmn7WQ3hDdCgDEtdpKzqfFmgZ13Nr2ePMzTqvXp3arunH01TYN1Oi7NsnMfmM7cS2Pq9AI7tJ1rm71kqzJ1wP3vPkgery7n5zfZ5P769nw8ySxV0GUGEHNDlWQVKPWs8lzTUjIUFCzXuQCkGlFXvHy2kktLKoqGlADCslxaoIPktPdd-vZ9haErFi5YrGvTYLsKhVKaSkm1iuTJvyRlmmgNMoJHf8C3duXjd9FNMJ5LKXWERj1kfRuCx6pYercw_rMAUqwjL2LkxTryoo88Ko6_bU2wpq68aawLvzINSuR8ff6w5xwi_qwZ5ZzG-gKEg4eU</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kwang June Sohn</creator><creator>Hongbin Li</creator><creator>Himed, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071101</creationdate><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><author>Kwang June Sohn ; Hongbin Li ; Himed, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive signal detection</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Closed-form solution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Disturbances</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Generalized likelihood ratio test (GLRT)</topic><topic>Information, signal and communications theory</topic><topic>Matched filters</topic><topic>maximum likelihood (ML) parameter estimation</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Multichannel</topic><topic>multichannel signal detection</topic><topic>Parameter estimation</topic><topic>parametric models</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal, noise</topic><topic>space-time adaptive processing (STAP)</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Training</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwang June Sohn</creatorcontrib><creatorcontrib>Hongbin Li</creatorcontrib><creatorcontrib>Himed, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwang June Sohn</au><au>Hongbin Li</au><au>Himed, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric GLRT for Multichannel Adaptive Signal Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>55</volume><issue>11</issue><spage>5351</spage><epage>5360</epage><pages>5351-5360</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.896068</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2007-11, Vol.55 (11), p.5351-5360 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_19186257 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive signal detection Applied sciences Asymptotic properties Closed-form solution Detection, estimation, filtering, equalization, prediction Detectors Disturbances Estimators Exact sciences and technology Exact solutions Generalized likelihood ratio test (GLRT) Information, signal and communications theory Matched filters maximum likelihood (ML) parameter estimation Maximum likelihood detection Maximum likelihood estimation Multichannel multichannel signal detection Parameter estimation parametric models Signal and communications theory Signal detection Signal, noise space-time adaptive processing (STAP) Studies Telecommunications and information theory Testing Training Yield estimation |
title | Parametric GLRT for Multichannel Adaptive Signal Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20GLRT%20for%20Multichannel%20Adaptive%20Signal%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kwang%20June%20Sohn&rft.date=2007-11-01&rft.volume=55&rft.issue=11&rft.spage=5351&rft.epage=5360&rft.pages=5351-5360&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.896068&rft_dat=%3Cproquest_RIE%3E2335835701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864527779&rft_id=info:pmid/&rft_ieee_id=4355333&rfr_iscdi=true |