Parametric GLRT for Multichannel Adaptive Signal Detection

This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-11, Vol.55 (11), p.5351-5360
Hauptverfasser: Kwang June Sohn, Hongbin Li, Himed, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5360
container_issue 11
container_start_page 5351
container_title IEEE transactions on signal processing
container_volume 55
creator Kwang June Sohn
Hongbin Li
Himed, B.
description This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.
doi_str_mv 10.1109/TSP.2007.896068
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_19186257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4355333</ieee_id><sourcerecordid>2335835701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxYMoqNWzBy9BUE9pd7Lf3orfULHYCt7CupnoSprU3VTwv3dLRMGDc5mB-b03zEuSAyBDAKJH89l0mBMih0oLItRGsgOaQUaYFJtxJpxmXMmn7WQ3hDdCgDEtdpKzqfFmgZ13Nr2ePMzTqvXp3arunH01TYN1Oi7NsnMfmM7cS2Pq9AI7tJ1rm71kqzJ1wP3vPkgery7n5zfZ5P769nw8ySxV0GUGEHNDlWQVKPWs8lzTUjIUFCzXuQCkGlFXvHy2kktLKoqGlADCslxaoIPktPdd-vZ9haErFi5YrGvTYLsKhVKaSkm1iuTJvyRlmmgNMoJHf8C3duXjd9FNMJ5LKXWERj1kfRuCx6pYercw_rMAUqwjL2LkxTryoo88Ko6_bU2wpq68aawLvzINSuR8ff6w5xwi_qwZ5ZzG-gKEg4eU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864527779</pqid></control><display><type>article</type><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Kwang June Sohn ; Hongbin Li ; Himed, B.</creator><creatorcontrib>Kwang June Sohn ; Hongbin Li ; Himed, B.</creatorcontrib><description>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.896068</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive signal detection ; Applied sciences ; Asymptotic properties ; Closed-form solution ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Disturbances ; Estimators ; Exact sciences and technology ; Exact solutions ; Generalized likelihood ratio test (GLRT) ; Information, signal and communications theory ; Matched filters ; maximum likelihood (ML) parameter estimation ; Maximum likelihood detection ; Maximum likelihood estimation ; Multichannel ; multichannel signal detection ; Parameter estimation ; parametric models ; Signal and communications theory ; Signal detection ; Signal, noise ; space-time adaptive processing (STAP) ; Studies ; Telecommunications and information theory ; Testing ; Training ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 2007-11, Vol.55 (11), p.5351-5360</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</citedby><cites>FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4355333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4355333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19186257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwang June Sohn</creatorcontrib><creatorcontrib>Hongbin Li</creatorcontrib><creatorcontrib>Himed, B.</creatorcontrib><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</description><subject>Adaptive signal detection</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Closed-form solution</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Disturbances</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Generalized likelihood ratio test (GLRT)</subject><subject>Information, signal and communications theory</subject><subject>Matched filters</subject><subject>maximum likelihood (ML) parameter estimation</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Multichannel</subject><subject>multichannel signal detection</subject><subject>Parameter estimation</subject><subject>parametric models</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal, noise</subject><subject>space-time adaptive processing (STAP)</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Training</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kM1Lw0AQxYMoqNWzBy9BUE9pd7Lf3orfULHYCt7CupnoSprU3VTwv3dLRMGDc5mB-b03zEuSAyBDAKJH89l0mBMih0oLItRGsgOaQUaYFJtxJpxmXMmn7WQ3hDdCgDEtdpKzqfFmgZ13Nr2ePMzTqvXp3arunH01TYN1Oi7NsnMfmM7cS2Pq9AI7tJ1rm71kqzJ1wP3vPkgery7n5zfZ5P769nw8ySxV0GUGEHNDlWQVKPWs8lzTUjIUFCzXuQCkGlFXvHy2kktLKoqGlADCslxaoIPktPdd-vZ9haErFi5YrGvTYLsKhVKaSkm1iuTJvyRlmmgNMoJHf8C3duXjd9FNMJ5LKXWERj1kfRuCx6pYercw_rMAUqwjL2LkxTryoo88Ko6_bU2wpq68aawLvzINSuR8ff6w5xwi_qwZ5ZzG-gKEg4eU</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kwang June Sohn</creator><creator>Hongbin Li</creator><creator>Himed, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071101</creationdate><title>Parametric GLRT for Multichannel Adaptive Signal Detection</title><author>Kwang June Sohn ; Hongbin Li ; Himed, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-a1ee2a3874f188b82293d74e631c59261e39ee9f5dbc757c0f3ea0d116c427c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive signal detection</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Closed-form solution</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Disturbances</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Generalized likelihood ratio test (GLRT)</topic><topic>Information, signal and communications theory</topic><topic>Matched filters</topic><topic>maximum likelihood (ML) parameter estimation</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Multichannel</topic><topic>multichannel signal detection</topic><topic>Parameter estimation</topic><topic>parametric models</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal, noise</topic><topic>space-time adaptive processing (STAP)</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Training</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwang June Sohn</creatorcontrib><creatorcontrib>Hongbin Li</creatorcontrib><creatorcontrib>Himed, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwang June Sohn</au><au>Hongbin Li</au><au>Himed, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric GLRT for Multichannel Adaptive Signal Detection</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>55</volume><issue>11</issue><spage>5351</spage><epage>5360</epage><pages>5351-5360</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers the problem of detecting a multichannel signal in the presence of spatially and temporally colored disturbance. A parametric generalized likelihood ratio test (GLRT) is developed by modeling the disturbance as a multichannel autoregressive (AR) process. Maximum likelihood (ML) parameter estimation underlying the parametric GLRT is examined. It is shown that the ML estimator for the alternative hypothesis is nonlinear and there exists no closed-form expression. To address this issue, an asymptotic ML (AML) estimator is presented, which yields asymptotically optimum parameter estimates at reduced complexity. The performance of the parametric GLRT is studied by considering challenging cases with limited or no training signals for parameter estimation. Such cases (especially when training is unavailable) are of great interest in detecting signals in heterogeneous, fast changing, or dense-target environments, but generally cannot be handled by most existing multichannel detectors which rely more heavily on training at an adequate level. Compared with the recently introduced parametric adaptive matched filter (PAMF) and parametric Rao detectors, the parametric GLRT achieves higher data efficiency, offering improved detection performance in general.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.896068</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-11, Vol.55 (11), p.5351-5360
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_19186257
source IEEE Electronic Library (IEL)
subjects Adaptive signal detection
Applied sciences
Asymptotic properties
Closed-form solution
Detection, estimation, filtering, equalization, prediction
Detectors
Disturbances
Estimators
Exact sciences and technology
Exact solutions
Generalized likelihood ratio test (GLRT)
Information, signal and communications theory
Matched filters
maximum likelihood (ML) parameter estimation
Maximum likelihood detection
Maximum likelihood estimation
Multichannel
multichannel signal detection
Parameter estimation
parametric models
Signal and communications theory
Signal detection
Signal, noise
space-time adaptive processing (STAP)
Studies
Telecommunications and information theory
Testing
Training
Yield estimation
title Parametric GLRT for Multichannel Adaptive Signal Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20GLRT%20for%20Multichannel%20Adaptive%20Signal%20Detection&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kwang%20June%20Sohn&rft.date=2007-11-01&rft.volume=55&rft.issue=11&rft.spage=5351&rft.epage=5360&rft.pages=5351-5360&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.896068&rft_dat=%3Cproquest_RIE%3E2335835701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864527779&rft_id=info:pmid/&rft_ieee_id=4355333&rfr_iscdi=true