Incremental Manifold Learning Via Tangent Space Alignment

Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Xiaoming, Yin, Jianwei, Feng, Zhilin, Dong, Jinxiang
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 107
container_title
container_volume
creator Liu, Xiaoming
Yin, Jianwei
Feng, Zhilin
Dong, Jinxiang
description Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.
doi_str_mv 10.1007/11829898_10
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19184399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19184399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</originalsourceid><addsrcrecordid>eNpNkDtPwzAURs1Loi1M_IEsDAwBXz8S37GqeFQKYqBija5jOwqkThV34d-Tqkgw3eEcXX06jN0AvwfOywcAI9CgqYGfsLnUissStdCnbAYFQC6lwrM_AOU5m3HJRY6lkpdsntIn51yUKGYM17EZ_dbHPfXZK8UuDL3LKk9j7GKbfXSUbSi2E8_ed9T4bNl3bTz4V-wiUJ_89e9dsM3T42b1kldvz-vVssqbaeQ-N5o8t9pSo1QAlFAqtEUw0uoCAYIT4AuniTg6iwKccE6CsZajCJrkgt0e3-4oNdSHkWLTpXo3dlsav2tAMEoiTt7d0UsTmgaPtR2GrzQ1qg_R6n_R5A9piVjx</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Incremental Manifold Learning Via Tangent Space Alignment</title><source>Springer Books</source><creator>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang</creator><contributor>Marinai, Simone ; Schwenker, Friedhelm</contributor><creatorcontrib>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang ; Marinai, Simone ; Schwenker, Friedhelm</creatorcontrib><description>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540379517</identifier><identifier>ISBN: 9783540379515</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540379525</identifier><identifier>EISBN: 9783540379522</identifier><identifier>DOI: 10.1007/11829898_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; incremental learning ; LASSO ; LTSA ; manifold learning</subject><ispartof>Artificial Neural Networks in Pattern Recognition, 2006, p.107-121</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11829898_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11829898_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19184399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Marinai, Simone</contributor><contributor>Schwenker, Friedhelm</contributor><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><creatorcontrib>Dong, Jinxiang</creatorcontrib><title>Incremental Manifold Learning Via Tangent Space Alignment</title><title>Artificial Neural Networks in Pattern Recognition</title><description>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>incremental learning</subject><subject>LASSO</subject><subject>LTSA</subject><subject>manifold learning</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540379517</isbn><isbn>9783540379515</isbn><isbn>3540379525</isbn><isbn>9783540379522</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAURs1Loi1M_IEsDAwBXz8S37GqeFQKYqBija5jOwqkThV34d-Tqkgw3eEcXX06jN0AvwfOywcAI9CgqYGfsLnUissStdCnbAYFQC6lwrM_AOU5m3HJRY6lkpdsntIn51yUKGYM17EZ_dbHPfXZK8UuDL3LKk9j7GKbfXSUbSi2E8_ed9T4bNl3bTz4V-wiUJ_89e9dsM3T42b1kldvz-vVssqbaeQ-N5o8t9pSo1QAlFAqtEUw0uoCAYIT4AuniTg6iwKccE6CsZajCJrkgt0e3-4oNdSHkWLTpXo3dlsav2tAMEoiTt7d0UsTmgaPtR2GrzQ1qg_R6n_R5A9piVjx</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, Xiaoming</creator><creator>Yin, Jianwei</creator><creator>Feng, Zhilin</creator><creator>Dong, Jinxiang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Incremental Manifold Learning Via Tangent Space Alignment</title><author>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>incremental learning</topic><topic>LASSO</topic><topic>LTSA</topic><topic>manifold learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><creatorcontrib>Dong, Jinxiang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoming</au><au>Yin, Jianwei</au><au>Feng, Zhilin</au><au>Dong, Jinxiang</au><au>Marinai, Simone</au><au>Schwenker, Friedhelm</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Incremental Manifold Learning Via Tangent Space Alignment</atitle><btitle>Artificial Neural Networks in Pattern Recognition</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>107</spage><epage>121</epage><pages>107-121</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540379517</isbn><isbn>9783540379515</isbn><eisbn>3540379525</eisbn><eisbn>9783540379522</eisbn><abstract>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11829898_10</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Neural Networks in Pattern Recognition, 2006, p.107-121
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19184399
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
incremental learning
LASSO
LTSA
manifold learning
title Incremental Manifold Learning Via Tangent Space Alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Incremental%20Manifold%20Learning%20Via%20Tangent%20Space%20Alignment&rft.btitle=Artificial%20Neural%20Networks%20in%20Pattern%20Recognition&rft.au=Liu,%20Xiaoming&rft.date=2006&rft.spage=107&rft.epage=121&rft.pages=107-121&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540379517&rft.isbn_list=9783540379515&rft_id=info:doi/10.1007/11829898_10&rft_dat=%3Cpascalfrancis_sprin%3E19184399%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540379525&rft.eisbn_list=9783540379522&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true