Incremental Manifold Learning Via Tangent Space Alignment
Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them ope...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 107 |
container_title | |
container_volume | |
creator | Liu, Xiaoming Yin, Jianwei Feng, Zhilin Dong, Jinxiang |
description | Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms. |
doi_str_mv | 10.1007/11829898_10 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19184399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19184399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</originalsourceid><addsrcrecordid>eNpNkDtPwzAURs1Loi1M_IEsDAwBXz8S37GqeFQKYqBija5jOwqkThV34d-Tqkgw3eEcXX06jN0AvwfOywcAI9CgqYGfsLnUissStdCnbAYFQC6lwrM_AOU5m3HJRY6lkpdsntIn51yUKGYM17EZ_dbHPfXZK8UuDL3LKk9j7GKbfXSUbSi2E8_ed9T4bNl3bTz4V-wiUJ_89e9dsM3T42b1kldvz-vVssqbaeQ-N5o8t9pSo1QAlFAqtEUw0uoCAYIT4AuniTg6iwKccE6CsZajCJrkgt0e3-4oNdSHkWLTpXo3dlsav2tAMEoiTt7d0UsTmgaPtR2GrzQ1qg_R6n_R5A9piVjx</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Incremental Manifold Learning Via Tangent Space Alignment</title><source>Springer Books</source><creator>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang</creator><contributor>Marinai, Simone ; Schwenker, Friedhelm</contributor><creatorcontrib>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang ; Marinai, Simone ; Schwenker, Friedhelm</creatorcontrib><description>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540379517</identifier><identifier>ISBN: 9783540379515</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540379525</identifier><identifier>EISBN: 9783540379522</identifier><identifier>DOI: 10.1007/11829898_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; incremental learning ; LASSO ; LTSA ; manifold learning</subject><ispartof>Artificial Neural Networks in Pattern Recognition, 2006, p.107-121</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11829898_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11829898_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19184399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Marinai, Simone</contributor><contributor>Schwenker, Friedhelm</contributor><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><creatorcontrib>Dong, Jinxiang</creatorcontrib><title>Incremental Manifold Learning Via Tangent Space Alignment</title><title>Artificial Neural Networks in Pattern Recognition</title><description>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>incremental learning</subject><subject>LASSO</subject><subject>LTSA</subject><subject>manifold learning</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540379517</isbn><isbn>9783540379515</isbn><isbn>3540379525</isbn><isbn>9783540379522</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAURs1Loi1M_IEsDAwBXz8S37GqeFQKYqBija5jOwqkThV34d-Tqkgw3eEcXX06jN0AvwfOywcAI9CgqYGfsLnUissStdCnbAYFQC6lwrM_AOU5m3HJRY6lkpdsntIn51yUKGYM17EZ_dbHPfXZK8UuDL3LKk9j7GKbfXSUbSi2E8_ed9T4bNl3bTz4V-wiUJ_89e9dsM3T42b1kldvz-vVssqbaeQ-N5o8t9pSo1QAlFAqtEUw0uoCAYIT4AuniTg6iwKccE6CsZajCJrkgt0e3-4oNdSHkWLTpXo3dlsav2tAMEoiTt7d0UsTmgaPtR2GrzQ1qg_R6n_R5A9piVjx</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, Xiaoming</creator><creator>Yin, Jianwei</creator><creator>Feng, Zhilin</creator><creator>Dong, Jinxiang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Incremental Manifold Learning Via Tangent Space Alignment</title><author>Liu, Xiaoming ; Yin, Jianwei ; Feng, Zhilin ; Dong, Jinxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-85ae0b5bac44f1931749b6f83b56911fd21e6d5aa09db921d2dd318bb092f5a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>incremental learning</topic><topic>LASSO</topic><topic>LTSA</topic><topic>manifold learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoming</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><creatorcontrib>Dong, Jinxiang</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoming</au><au>Yin, Jianwei</au><au>Feng, Zhilin</au><au>Dong, Jinxiang</au><au>Marinai, Simone</au><au>Schwenker, Friedhelm</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Incremental Manifold Learning Via Tangent Space Alignment</atitle><btitle>Artificial Neural Networks in Pattern Recognition</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>107</spage><epage>121</epage><pages>107-121</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540379517</isbn><isbn>9783540379515</isbn><eisbn>3540379525</eisbn><eisbn>9783540379522</eisbn><abstract>Several algorithms have been proposed to analysis the structure of high-dimensional data based on the notion of manifold learning. They have been used to extract the intrinsic characteristic of different type of high-dimensional data by performing nonlinear dimensionality reduction. Most of them operate in a “batch” mode and cannot be efficiently applied when data are collected sequentially. In this paper, we proposed an incremental version (ILTSA) of LTSA (Local Tangent Space Alignment), which is one of the key manifold learning algorithms. Besides, a landmark version of LTSA (LLTSA) is proposed, where landmarks are selected based on LASSO regression, which is well known to favor sparse approximations because it uses regularization with l1 norm. Furthermore, an incremental version (ILLTSA) of LLTSA is also proposed. Experimental results on synthetic data and real word data sets demonstrate the effectivity of our algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11829898_10</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Artificial Neural Networks in Pattern Recognition, 2006, p.107-121 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19184399 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology incremental learning LASSO LTSA manifold learning |
title | Incremental Manifold Learning Via Tangent Space Alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Incremental%20Manifold%20Learning%20Via%20Tangent%20Space%20Alignment&rft.btitle=Artificial%20Neural%20Networks%20in%20Pattern%20Recognition&rft.au=Liu,%20Xiaoming&rft.date=2006&rft.spage=107&rft.epage=121&rft.pages=107-121&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540379517&rft.isbn_list=9783540379515&rft_id=info:doi/10.1007/11829898_10&rft_dat=%3Cpascalfrancis_sprin%3E19184399%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540379525&rft.eisbn_list=9783540379522&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |