Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems
Multivariate (or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{MQ}$\end{document}) public-key cryptosystems...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | |
container_volume | |
creator | Yang, Bo-Yin Cheng, Chen-Mou Chen, Bor-Rong Chen, Jiun-Ming |
description | Multivariate (or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{MQ}$\end{document}) public-key cryptosystems (PKC) are alternatives to traditional PKCs based on large algebraic structures (e.g., RSA and ECC); they usually execute much faster than traditional PKCs on the same hardware. However, one major challenge in implementing multivariates in embedded systems is that the key size can be prohibitively large for applications with stringent resource constraints such as low-cost smart cards, sensor networks (e.g., Berkeley motes), and radio-frequency identification (RFID). In this paper, we investigate strategies for shortening the key of a multivariate PKC. We apply these strategies to the Tame Transformation Signatures (TTS) as an example and quantify the improvement in key size and running speed, both theoretically and via implementation. We also investigate ways to save die space and energy consumption in hardware, reporting on our ASIC implementation of TTS on a TSMC 0.25μm process. Even without any key shortening, the current consumption of TTS is only 21 μA for computing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 ms). With circulant-matrix key shortening, the numbers go down to 17,000 gates and 4,400 cycles (44 ms). We therefore conclude: besides representing a future-proofing investment against the emerging quantum computers, multivariates can be immediately useful in niches. |
doi_str_mv | 10.1007/11734666_7 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19183763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19183763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-f93be9df7c545a000e8a600eb29a3a053cba0a246c2f900f0e1838763930059f3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1LopRe-AW5IHEJrLOOHR9RVSiiFYjH2XIcuzLkUcUpqPx6jApiD7OH-TQaDSFnFC4pgLiiVCDjnCuxRyZSFJgzQEQhxD4ZUU5pisjkATn5M3h2SEaAkKVSMDwmkxDeIB5SKZkckflds65tY9vBt6tk6Vvf-C9bJctNPfgP3Xs92OTxfpp0bbLoPtMnG7pNb2wya0pbVZF83obBNuGUHDldBzv5_WPyejN7mc7TxcPt3fR6kZosl0PqJJZWVk6YnOU6FrGF5lHLTGrUkKMpNeiMcZM5CeDA0gILwVEiQC4djsn5Lnetg9G163VrfFDr3je63yoqIx_xyF3suBCtdmV7VXbde1AU1M-S6n9J_AYvxl8q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems</title><source>Springer Books</source><creator>Yang, Bo-Yin ; Cheng, Chen-Mou ; Chen, Bor-Rong ; Chen, Jiun-Ming</creator><contributor>Clark, John A. ; Paige, Richard F. ; Brooke, Phillip J. ; Polack, Fiona A. C.</contributor><creatorcontrib>Yang, Bo-Yin ; Cheng, Chen-Mou ; Chen, Bor-Rong ; Chen, Jiun-Ming ; Clark, John A. ; Paige, Richard F. ; Brooke, Phillip J. ; Polack, Fiona A. C.</creatorcontrib><description>Multivariate (or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{MQ}$\end{document}) public-key cryptosystems (PKC) are alternatives to traditional PKCs based on large algebraic structures (e.g., RSA and ECC); they usually execute much faster than traditional PKCs on the same hardware. However, one major challenge in implementing multivariates in embedded systems is that the key size can be prohibitively large for applications with stringent resource constraints such as low-cost smart cards, sensor networks (e.g., Berkeley motes), and radio-frequency identification (RFID). In this paper, we investigate strategies for shortening the key of a multivariate PKC. We apply these strategies to the Tame Transformation Signatures (TTS) as an example and quantify the improvement in key size and running speed, both theoretically and via implementation. We also investigate ways to save die space and energy consumption in hardware, reporting on our ASIC implementation of TTS on a TSMC 0.25μm process. Even without any key shortening, the current consumption of TTS is only 21 μA for computing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 ms). With circulant-matrix key shortening, the numbers go down to 17,000 gates and 4,400 cycles (44 ms). We therefore conclude: besides representing a future-proofing investment against the emerging quantum computers, multivariates can be immediately useful in niches.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540333762</identifier><identifier>ISBN: 9783540333760</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540333777</identifier><identifier>EISBN: 3540333770</identifier><identifier>DOI: 10.1007/11734666_7</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; digital signature schemes ; efficient implementation ; embedded system ; Exact sciences and technology ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; motes ; Multivariate public-key cryptosystem ; sensor networks ; Software ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.73-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-f93be9df7c545a000e8a600eb29a3a053cba0a246c2f900f0e1838763930059f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11734666_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11734666_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19183763$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Clark, John A.</contributor><contributor>Paige, Richard F.</contributor><contributor>Brooke, Phillip J.</contributor><contributor>Polack, Fiona A. C.</contributor><creatorcontrib>Yang, Bo-Yin</creatorcontrib><creatorcontrib>Cheng, Chen-Mou</creatorcontrib><creatorcontrib>Chen, Bor-Rong</creatorcontrib><creatorcontrib>Chen, Jiun-Ming</creatorcontrib><title>Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems</title><title>Lecture notes in computer science</title><description>Multivariate (or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{MQ}$\end{document}) public-key cryptosystems (PKC) are alternatives to traditional PKCs based on large algebraic structures (e.g., RSA and ECC); they usually execute much faster than traditional PKCs on the same hardware. However, one major challenge in implementing multivariates in embedded systems is that the key size can be prohibitively large for applications with stringent resource constraints such as low-cost smart cards, sensor networks (e.g., Berkeley motes), and radio-frequency identification (RFID). In this paper, we investigate strategies for shortening the key of a multivariate PKC. We apply these strategies to the Tame Transformation Signatures (TTS) as an example and quantify the improvement in key size and running speed, both theoretically and via implementation. We also investigate ways to save die space and energy consumption in hardware, reporting on our ASIC implementation of TTS on a TSMC 0.25μm process. Even without any key shortening, the current consumption of TTS is only 21 μA for computing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 ms). With circulant-matrix key shortening, the numbers go down to 17,000 gates and 4,400 cycles (44 ms). We therefore conclude: besides representing a future-proofing investment against the emerging quantum computers, multivariates can be immediately useful in niches.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>digital signature schemes</subject><subject>efficient implementation</subject><subject>embedded system</subject><subject>Exact sciences and technology</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>motes</subject><subject>Multivariate public-key cryptosystem</subject><subject>sensor networks</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540333762</isbn><isbn>9783540333760</isbn><isbn>9783540333777</isbn><isbn>3540333770</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1LopRe-AW5IHEJrLOOHR9RVSiiFYjH2XIcuzLkUcUpqPx6jApiD7OH-TQaDSFnFC4pgLiiVCDjnCuxRyZSFJgzQEQhxD4ZUU5pisjkATn5M3h2SEaAkKVSMDwmkxDeIB5SKZkckflds65tY9vBt6tk6Vvf-C9bJctNPfgP3Xs92OTxfpp0bbLoPtMnG7pNb2wya0pbVZF83obBNuGUHDldBzv5_WPyejN7mc7TxcPt3fR6kZosl0PqJJZWVk6YnOU6FrGF5lHLTGrUkKMpNeiMcZM5CeDA0gILwVEiQC4djsn5Lnetg9G163VrfFDr3je63yoqIx_xyF3suBCtdmV7VXbde1AU1M-S6n9J_AYvxl8q</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yang, Bo-Yin</creator><creator>Cheng, Chen-Mou</creator><creator>Chen, Bor-Rong</creator><creator>Chen, Jiun-Ming</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems</title><author>Yang, Bo-Yin ; Cheng, Chen-Mou ; Chen, Bor-Rong ; Chen, Jiun-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-f93be9df7c545a000e8a600eb29a3a053cba0a246c2f900f0e1838763930059f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>digital signature schemes</topic><topic>efficient implementation</topic><topic>embedded system</topic><topic>Exact sciences and technology</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>motes</topic><topic>Multivariate public-key cryptosystem</topic><topic>sensor networks</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bo-Yin</creatorcontrib><creatorcontrib>Cheng, Chen-Mou</creatorcontrib><creatorcontrib>Chen, Bor-Rong</creatorcontrib><creatorcontrib>Chen, Jiun-Ming</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Bo-Yin</au><au>Cheng, Chen-Mou</au><au>Chen, Bor-Rong</au><au>Chen, Jiun-Ming</au><au>Clark, John A.</au><au>Paige, Richard F.</au><au>Brooke, Phillip J.</au><au>Polack, Fiona A. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>73</spage><epage>88</epage><pages>73-88</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540333762</isbn><isbn>9783540333760</isbn><eisbn>9783540333777</eisbn><eisbn>3540333770</eisbn><abstract>Multivariate (or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal{MQ}$\end{document}) public-key cryptosystems (PKC) are alternatives to traditional PKCs based on large algebraic structures (e.g., RSA and ECC); they usually execute much faster than traditional PKCs on the same hardware. However, one major challenge in implementing multivariates in embedded systems is that the key size can be prohibitively large for applications with stringent resource constraints such as low-cost smart cards, sensor networks (e.g., Berkeley motes), and radio-frequency identification (RFID). In this paper, we investigate strategies for shortening the key of a multivariate PKC. We apply these strategies to the Tame Transformation Signatures (TTS) as an example and quantify the improvement in key size and running speed, both theoretically and via implementation. We also investigate ways to save die space and energy consumption in hardware, reporting on our ASIC implementation of TTS on a TSMC 0.25μm process. Even without any key shortening, the current consumption of TTS is only 21 μA for computing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 ms). With circulant-matrix key shortening, the numbers go down to 17,000 gates and 4,400 cycles (44 ms). We therefore conclude: besides representing a future-proofing investment against the emerging quantum computers, multivariates can be immediately useful in niches.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11734666_7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.73-88 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19183763 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface digital signature schemes efficient implementation embedded system Exact sciences and technology Memory and file management (including protection and security) Memory organisation. Data processing motes Multivariate public-key cryptosystem sensor networks Software Theoretical computing |
title | Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementing%20Minimized%20Multivariate%20PKC%20on%20Low-Resource%20Embedded%20Systems&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Yang,%20Bo-Yin&rft.date=2006&rft.spage=73&rft.epage=88&rft.pages=73-88&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540333762&rft.isbn_list=9783540333760&rft_id=info:doi/10.1007/11734666_7&rft_dat=%3Cpascalfrancis_sprin%3E19183763%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540333777&rft.eisbn_list=3540333770&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |