Weak Bisimulation Approximants
Bisimilarity and weak bisimilarity ≈ are canonical notions of equivalence between processes, which are defined co-inductively, but may be approached – and even reached – by their (transfinite) inductively-defined approximants ~α and ≈α. For arbitrary processes this approximation may need to climb ar...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bisimilarity and weak bisimilarity ≈ are canonical notions of equivalence between processes, which are defined co-inductively, but may be approached – and even reached – by their (transfinite) inductively-defined approximants ~α and ≈α. For arbitrary processes this approximation may need to climb arbitrarily high through the infinite ordinals before stabilising. In this paper we consider a simple yet well-studied process algebra, the Basic Parallel Processes (BPP), and investigate for this class of processes the minimal ordinal α such that ≈ = ≈α.
The main tool in our investigation is a novel proof of Dickson’s Lemma. Unlike classical proofs, the proof we provide gives rise to a tight ordinal bound, of ωn, on the order type of non-increasing sequences of n-tuples of natural numbers. With this we are able to reduce a long-standing bound on the approximation hierarchy for weak bisimilarity ≈ over BPP, and show that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\approx} = {\approx_{\omega^\omega}}$\end{document}. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11874683_24 |