Weak Bisimulation Approximants

Bisimilarity and weak bisimilarity ≈ are canonical notions of equivalence between processes, which are defined co-inductively, but may be approached – and even reached – by their (transfinite) inductively-defined approximants ~α and ≈α. For arbitrary processes this approximation may need to climb ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harwood, Will, Moller, Faron, Setzer, Anton
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bisimilarity and weak bisimilarity ≈ are canonical notions of equivalence between processes, which are defined co-inductively, but may be approached – and even reached – by their (transfinite) inductively-defined approximants ~α and ≈α. For arbitrary processes this approximation may need to climb arbitrarily high through the infinite ordinals before stabilising. In this paper we consider a simple yet well-studied process algebra, the Basic Parallel Processes (BPP), and investigate for this class of processes the minimal ordinal α such that ≈ = ≈α. The main tool in our investigation is a novel proof of Dickson’s Lemma. Unlike classical proofs, the proof we provide gives rise to a tight ordinal bound, of ωn, on the order type of non-increasing sequences of n-tuples of natural numbers. With this we are able to reduce a long-standing bound on the approximation hierarchy for weak bisimilarity ≈ over BPP, and show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx} = {\approx_{\omega^\omega}}$\end{document}.
ISSN:0302-9743
1611-3349
DOI:10.1007/11874683_24