Greyscale Image Interpolation Using Mathematical Morphology

When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”. Earlier we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ledda, Alessandro, Luong, Hiêp Q., Philips, Wilfried, De Witte, Valérie, Kerre, Etienne E.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 78
container_title
container_volume
creator Ledda, Alessandro
Luong, Hiêp Q.
Philips, Wilfried
De Witte, Valérie
Kerre, Etienne E.
description When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”. Earlier we proposed the “mmint” magnification method (for integer scaling factors), which avoids jaggies. It is based on mathematical morphology. The algorithm detects jaggies in magnified binary images (using pixel replication) and removes them, making the edges smoother. This is done by replacing the value of specific pixels. In this paper, we extend the binary mmint to greyscale images. The pixels are locally binarized so that the same morphological techniques can be applied as for mmint. We take care of the more difficult replacement of pixel values, because several grey values can be part of a jaggy. We then discuss the visual results of the new greyscale method.
doi_str_mv 10.1007/11864349_8
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162452</sourcerecordid><originalsourceid>FETCH-LOGICAL-p254t-ab2330e6829bce6690c891487daa573d7c433720792333c340fa1218160b68953</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhsOXxBi78At6QeJSiOM0H-KEJhiTNnFh5yjt0q7QNVXSy_49mQbCB1vy88iyXkLugD4CpfIJQAmOXBt1RmZaKiw45Vwgw3MyAQGQY6IX5OYPULwkE4qU5VpyvCazGL9oKoRCgpiQ50Vwh1jZzmXLvW1S70cXBt_ZsfV9tolt32RrO-7cPm2Sl619GHa-883hllzVtotu9junZPP2-jl_z1cfi-X8ZZUPrOBjbkuGSJ1QTJeVE0LTSmngSm6tLSRuZcURJaNSJw8r5LS2wECBoKVQusApuT_dHezx0zrYvmqjGUK7t-FgQINgvGDJezh5MaG-ccGU3n9HA9QcwzP_4eEPZlxZwA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Greyscale Image Interpolation Using Mathematical Morphology</title><source>Springer Books</source><creator>Ledda, Alessandro ; Luong, Hiêp Q. ; Philips, Wilfried ; De Witte, Valérie ; Kerre, Etienne E.</creator><contributor>Blanc-Talon, Jacques ; Popescu, Dan ; Philips, Wilfried ; Scheunders, Paul</contributor><creatorcontrib>Ledda, Alessandro ; Luong, Hiêp Q. ; Philips, Wilfried ; De Witte, Valérie ; Kerre, Etienne E. ; Blanc-Talon, Jacques ; Popescu, Dan ; Philips, Wilfried ; Scheunders, Paul</creatorcontrib><description>When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”. Earlier we proposed the “mmint” magnification method (for integer scaling factors), which avoids jaggies. It is based on mathematical morphology. The algorithm detects jaggies in magnified binary images (using pixel replication) and removes them, making the edges smoother. This is done by replacing the value of specific pixels. In this paper, we extend the binary mmint to greyscale images. The pixels are locally binarized so that the same morphological techniques can be applied as for mmint. We take care of the more difficult replacement of pixel values, because several grey values can be part of a jaggy. We then discuss the visual results of the new greyscale method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540446303</identifier><identifier>ISBN: 9783540446309</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540446323</identifier><identifier>EISBN: 354044632X</identifier><identifier>DOI: 10.1007/11864349_8</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Corner Detection ; Current Pixel ; Exact sciences and technology ; Foreground Pixel ; Image Interpolation ; Mathematical Morphology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Advanced Concepts for Intelligent Vision Systems, 2006, p.78-90</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11864349_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11864349_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19162452$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Blanc-Talon, Jacques</contributor><contributor>Popescu, Dan</contributor><contributor>Philips, Wilfried</contributor><contributor>Scheunders, Paul</contributor><creatorcontrib>Ledda, Alessandro</creatorcontrib><creatorcontrib>Luong, Hiêp Q.</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>De Witte, Valérie</creatorcontrib><creatorcontrib>Kerre, Etienne E.</creatorcontrib><title>Greyscale Image Interpolation Using Mathematical Morphology</title><title>Advanced Concepts for Intelligent Vision Systems</title><description>When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”. Earlier we proposed the “mmint” magnification method (for integer scaling factors), which avoids jaggies. It is based on mathematical morphology. The algorithm detects jaggies in magnified binary images (using pixel replication) and removes them, making the edges smoother. This is done by replacing the value of specific pixels. In this paper, we extend the binary mmint to greyscale images. The pixels are locally binarized so that the same morphological techniques can be applied as for mmint. We take care of the more difficult replacement of pixel values, because several grey values can be part of a jaggy. We then discuss the visual results of the new greyscale method.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Corner Detection</subject><subject>Current Pixel</subject><subject>Exact sciences and technology</subject><subject>Foreground Pixel</subject><subject>Image Interpolation</subject><subject>Mathematical Morphology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540446303</isbn><isbn>9783540446309</isbn><isbn>9783540446323</isbn><isbn>354044632X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkE1PwzAMhsOXxBi78At6QeJSiOM0H-KEJhiTNnFh5yjt0q7QNVXSy_49mQbCB1vy88iyXkLugD4CpfIJQAmOXBt1RmZaKiw45Vwgw3MyAQGQY6IX5OYPULwkE4qU5VpyvCazGL9oKoRCgpiQ50Vwh1jZzmXLvW1S70cXBt_ZsfV9tolt32RrO-7cPm2Sl619GHa-883hllzVtotu9junZPP2-jl_z1cfi-X8ZZUPrOBjbkuGSJ1QTJeVE0LTSmngSm6tLSRuZcURJaNSJw8r5LS2wECBoKVQusApuT_dHezx0zrYvmqjGUK7t-FgQINgvGDJezh5MaG-ccGU3n9HA9QcwzP_4eEPZlxZwA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ledda, Alessandro</creator><creator>Luong, Hiêp Q.</creator><creator>Philips, Wilfried</creator><creator>De Witte, Valérie</creator><creator>Kerre, Etienne E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Greyscale Image Interpolation Using Mathematical Morphology</title><author>Ledda, Alessandro ; Luong, Hiêp Q. ; Philips, Wilfried ; De Witte, Valérie ; Kerre, Etienne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p254t-ab2330e6829bce6690c891487daa573d7c433720792333c340fa1218160b68953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Corner Detection</topic><topic>Current Pixel</topic><topic>Exact sciences and technology</topic><topic>Foreground Pixel</topic><topic>Image Interpolation</topic><topic>Mathematical Morphology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledda, Alessandro</creatorcontrib><creatorcontrib>Luong, Hiêp Q.</creatorcontrib><creatorcontrib>Philips, Wilfried</creatorcontrib><creatorcontrib>De Witte, Valérie</creatorcontrib><creatorcontrib>Kerre, Etienne E.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledda, Alessandro</au><au>Luong, Hiêp Q.</au><au>Philips, Wilfried</au><au>De Witte, Valérie</au><au>Kerre, Etienne E.</au><au>Blanc-Talon, Jacques</au><au>Popescu, Dan</au><au>Philips, Wilfried</au><au>Scheunders, Paul</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Greyscale Image Interpolation Using Mathematical Morphology</atitle><btitle>Advanced Concepts for Intelligent Vision Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>78</spage><epage>90</epage><pages>78-90</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540446303</isbn><isbn>9783540446309</isbn><eisbn>9783540446323</eisbn><eisbn>354044632X</eisbn><abstract>When magnifying a bitmapped image, we want to increase the number of pixels it covers, allowing for finer details in the image, which are not visible in the original image. Simple interpolation techniques are not suitable because they introduce jagged edges, also called “jaggies”. Earlier we proposed the “mmint” magnification method (for integer scaling factors), which avoids jaggies. It is based on mathematical morphology. The algorithm detects jaggies in magnified binary images (using pixel replication) and removes them, making the edges smoother. This is done by replacing the value of specific pixels. In this paper, we extend the binary mmint to greyscale images. The pixels are locally binarized so that the same morphological techniques can be applied as for mmint. We take care of the more difficult replacement of pixel values, because several grey values can be part of a jaggy. We then discuss the visual results of the new greyscale method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11864349_8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advanced Concepts for Intelligent Vision Systems, 2006, p.78-90
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19162452
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Corner Detection
Current Pixel
Exact sciences and technology
Foreground Pixel
Image Interpolation
Mathematical Morphology
Pattern recognition. Digital image processing. Computational geometry
title Greyscale Image Interpolation Using Mathematical Morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Greyscale%20Image%20Interpolation%20Using%20Mathematical%20Morphology&rft.btitle=Advanced%20Concepts%20for%20Intelligent%20Vision%20Systems&rft.au=Ledda,%20Alessandro&rft.date=2006&rft.spage=78&rft.epage=90&rft.pages=78-90&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540446303&rft.isbn_list=9783540446309&rft_id=info:doi/10.1007/11864349_8&rft_dat=%3Cpascalfrancis_sprin%3E19162452%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540446323&rft.eisbn_list=354044632X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true