Preview: Optimizing View Materialization Cost in Spatial Data Warehouses

One of the major challenges facing a data warehouse is to improve the query response time while keeping the maintenance cost to a minimum. Recent solutions to tackle this problem suggest to selectively materialize certain views and compute the remaining views on-the-fly, so that the cost is optimize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu, Songmei, Atluri, Vijayalakshmi, Adam, Nabil
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 45
container_title
container_volume
creator Yu, Songmei
Atluri, Vijayalakshmi
Adam, Nabil
description One of the major challenges facing a data warehouse is to improve the query response time while keeping the maintenance cost to a minimum. Recent solutions to tackle this problem suggest to selectively materialize certain views and compute the remaining views on-the-fly, so that the cost is optimized. Unfortunately, in case of a spatial data warehouse, both the view materialization cost and the on-the-fly computation cost are often extremely high. This is due to the fact that spatial data are larger in size and spatial operations are more complex and expensive than the traditional relational operations. In this paper, we propose a new notion, called preview, for which both the materialization and on-the-fly costs are significantly smaller than those of the traditional views. Essentially, to achieve these cost savings, a preview pre-processes the non-spatial part of the query, and maintains pointers to the spatial data. In addition, it exploits the hierarchical relationships among the different views by maintaining a universal composite lattice, and mapping each view onto it. We optimally decompose a spatial query into three components, the preview part, the materialized view part and the on-the-fly computation part, so that the total cost is minimized. We demonstrate the cost savings with realistic query scenarios.
doi_str_mv 10.1007/11823728_5
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162048</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-31f5d19470e7734255ae330b7e6f4bb9a93d25e4beceac5bab5c4a850441151c3</originalsourceid><addsrcrecordid>eNpVUEtLw0AYXF9grb34C_YieInut49s1pu0aoVKBV_H5dt0U1fTJGSjYn-9kQriaZgHwzCEHAE7Bcb0GUDGheaZVVtkZHQmlGRCa6HVNhlACpAIIc3OPy_NdsmACcYTo6XYJwcxvjLGuDZ8QKZ3rf8I_vOczpsurMI6VEv61Av0FjvfBizDGrtQV3Rcx46Git43PceSTrBD-oytf6nfo4-HZK_AMvrRLw7J49Xlw3iazObXN-OLWdJwyLpEQKEWYKRmvp8muVLohWBO-7SQzhk0YsGVl87nHnPl0KlcYqaYlAAKcjEkx5veBmOOZdFilYdomzassP2yYCDlTGZ97mSTi71VLX1rXV2_RQvM_jxp_54U333uX-w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Preview: Optimizing View Materialization Cost in Spatial Data Warehouses</title><source>Springer Books</source><creator>Yu, Songmei ; Atluri, Vijayalakshmi ; Adam, Nabil</creator><contributor>Trujillo, Juan ; Tjoa, A Min</contributor><creatorcontrib>Yu, Songmei ; Atluri, Vijayalakshmi ; Adam, Nabil ; Trujillo, Juan ; Tjoa, A Min</creatorcontrib><description>One of the major challenges facing a data warehouse is to improve the query response time while keeping the maintenance cost to a minimum. Recent solutions to tackle this problem suggest to selectively materialize certain views and compute the remaining views on-the-fly, so that the cost is optimized. Unfortunately, in case of a spatial data warehouse, both the view materialization cost and the on-the-fly computation cost are often extremely high. This is due to the fact that spatial data are larger in size and spatial operations are more complex and expensive than the traditional relational operations. In this paper, we propose a new notion, called preview, for which both the materialization and on-the-fly costs are significantly smaller than those of the traditional views. Essentially, to achieve these cost savings, a preview pre-processes the non-spatial part of the query, and maintains pointers to the spatial data. In addition, it exploits the hierarchical relationships among the different views by maintaining a universal composite lattice, and mapping each view onto it. We optimally decompose a spatial query into three components, the preview part, the materialized view part and the on-the-fly computation part, so that the total cost is minimized. We demonstrate the cost savings with realistic query scenarios.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540377368</identifier><identifier>ISBN: 3540377360</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540377375</identifier><identifier>EISBN: 3540377379</identifier><identifier>DOI: 10.1007/11823728_5</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>Data Warehousing and Knowledge Discovery, 2006, p.45-54</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11823728_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11823728_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19162048$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trujillo, Juan</contributor><contributor>Tjoa, A Min</contributor><creatorcontrib>Yu, Songmei</creatorcontrib><creatorcontrib>Atluri, Vijayalakshmi</creatorcontrib><creatorcontrib>Adam, Nabil</creatorcontrib><title>Preview: Optimizing View Materialization Cost in Spatial Data Warehouses</title><title>Data Warehousing and Knowledge Discovery</title><description>One of the major challenges facing a data warehouse is to improve the query response time while keeping the maintenance cost to a minimum. Recent solutions to tackle this problem suggest to selectively materialize certain views and compute the remaining views on-the-fly, so that the cost is optimized. Unfortunately, in case of a spatial data warehouse, both the view materialization cost and the on-the-fly computation cost are often extremely high. This is due to the fact that spatial data are larger in size and spatial operations are more complex and expensive than the traditional relational operations. In this paper, we propose a new notion, called preview, for which both the materialization and on-the-fly costs are significantly smaller than those of the traditional views. Essentially, to achieve these cost savings, a preview pre-processes the non-spatial part of the query, and maintains pointers to the spatial data. In addition, it exploits the hierarchical relationships among the different views by maintaining a universal composite lattice, and mapping each view onto it. We optimally decompose a spatial query into three components, the preview part, the materialized view part and the on-the-fly computation part, so that the total cost is minimized. We demonstrate the cost savings with realistic query scenarios.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540377368</isbn><isbn>3540377360</isbn><isbn>9783540377375</isbn><isbn>3540377379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUEtLw0AYXF9grb34C_YieInut49s1pu0aoVKBV_H5dt0U1fTJGSjYn-9kQriaZgHwzCEHAE7Bcb0GUDGheaZVVtkZHQmlGRCa6HVNhlACpAIIc3OPy_NdsmACcYTo6XYJwcxvjLGuDZ8QKZ3rf8I_vOczpsurMI6VEv61Av0FjvfBizDGrtQV3Rcx46Git43PceSTrBD-oytf6nfo4-HZK_AMvrRLw7J49Xlw3iazObXN-OLWdJwyLpEQKEWYKRmvp8muVLohWBO-7SQzhk0YsGVl87nHnPl0KlcYqaYlAAKcjEkx5veBmOOZdFilYdomzassP2yYCDlTGZ97mSTi71VLX1rXV2_RQvM_jxp_54U333uX-w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Yu, Songmei</creator><creator>Atluri, Vijayalakshmi</creator><creator>Adam, Nabil</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Preview: Optimizing View Materialization Cost in Spatial Data Warehouses</title><author>Yu, Songmei ; Atluri, Vijayalakshmi ; Adam, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-31f5d19470e7734255ae330b7e6f4bb9a93d25e4beceac5bab5c4a850441151c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Songmei</creatorcontrib><creatorcontrib>Atluri, Vijayalakshmi</creatorcontrib><creatorcontrib>Adam, Nabil</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Songmei</au><au>Atluri, Vijayalakshmi</au><au>Adam, Nabil</au><au>Trujillo, Juan</au><au>Tjoa, A Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Preview: Optimizing View Materialization Cost in Spatial Data Warehouses</atitle><btitle>Data Warehousing and Knowledge Discovery</btitle><date>2006</date><risdate>2006</risdate><spage>45</spage><epage>54</epage><pages>45-54</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540377368</isbn><isbn>3540377360</isbn><eisbn>9783540377375</eisbn><eisbn>3540377379</eisbn><abstract>One of the major challenges facing a data warehouse is to improve the query response time while keeping the maintenance cost to a minimum. Recent solutions to tackle this problem suggest to selectively materialize certain views and compute the remaining views on-the-fly, so that the cost is optimized. Unfortunately, in case of a spatial data warehouse, both the view materialization cost and the on-the-fly computation cost are often extremely high. This is due to the fact that spatial data are larger in size and spatial operations are more complex and expensive than the traditional relational operations. In this paper, we propose a new notion, called preview, for which both the materialization and on-the-fly costs are significantly smaller than those of the traditional views. Essentially, to achieve these cost savings, a preview pre-processes the non-spatial part of the query, and maintains pointers to the spatial data. In addition, it exploits the hierarchical relationships among the different views by maintaining a universal composite lattice, and mapping each view onto it. We optimally decompose a spatial query into three components, the preview part, the materialized view part and the on-the-fly computation part, so that the total cost is minimized. We demonstrate the cost savings with realistic query scenarios.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11823728_5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Data Warehousing and Knowledge Discovery, 2006, p.45-54
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19162048
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
title Preview: Optimizing View Materialization Cost in Spatial Data Warehouses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Preview:%20Optimizing%20View%20Materialization%20Cost%20in%20Spatial%20Data%20Warehouses&rft.btitle=Data%20Warehousing%20and%20Knowledge%20Discovery&rft.au=Yu,%20Songmei&rft.date=2006&rft.spage=45&rft.epage=54&rft.pages=45-54&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540377368&rft.isbn_list=3540377360&rft_id=info:doi/10.1007/11823728_5&rft_dat=%3Cpascalfrancis_sprin%3E19162048%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540377375&rft.eisbn_list=3540377379&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true