A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization
Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optima...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | |
container_start_page | 295 |
container_title | |
container_volume | |
creator | Pan, Yantao Peng, Wei Lu, Xicheng |
description | Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments. |
doi_str_mv | 10.1007/11814856_29 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162007</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4ff41bea992d1ba26b0abe6a8d87b6500cc8418ae1c6ededca80e343086c484d3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURs2fRCmdeIEsDAyBe23XscdSQUEqdIHZchynmKZxZAdV8PQElaHTN5yjbziEXCHcIkBxhyiRy6nQVB2RiSokm3JgBSqQx2SEAjFnjKuTQyYVPSUjYEBzVXB2Ti5S-gQAWig6IvezbOFa13ubzZp1iL7_2GahzV6-mt7nybUpxOzV9bsQNylb-npQty5bdcP4H9P70F6Ss9o0yU3-d0zeHx_e5k_5crV4ns-WeUdR9Tmva46lM0rRCktDRQmmdMLIShalmAJYKzlK49AKV7nKGgmOcQZSWC55xcbkev_bmWRNU0fTWp90F_3WxG-NCgUdIg3ezd5LA2rXLuoyhE3SCPovoj6IyH4B5dFe8A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><source>Springer Books</source><creator>Pan, Yantao ; Peng, Wei ; Lu, Xicheng</creator><contributor>Li, Wei ; Cheng, Xiuzhen ; Znati, Taieb</contributor><creatorcontrib>Pan, Yantao ; Peng, Wei ; Lu, Xicheng ; Li, Wei ; Cheng, Xiuzhen ; Znati, Taieb</creatorcontrib><description>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540371892</identifier><identifier>ISBN: 3540371893</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540371908</identifier><identifier>EISBN: 3540371907</identifier><identifier>DOI: 10.1007/11814856_29</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Genetic Algorithm ; Lifetime Optimization ; Sensor Networks ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.295-306</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11814856_29$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11814856_29$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19162007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Li, Wei</contributor><contributor>Cheng, Xiuzhen</contributor><contributor>Znati, Taieb</contributor><creatorcontrib>Pan, Yantao</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Lu, Xicheng</creatorcontrib><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><title>Lecture notes in computer science</title><description>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Lifetime Optimization</subject><subject>Sensor Networks</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540371892</isbn><isbn>3540371893</isbn><isbn>9783540371908</isbn><isbn>3540371907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkL1OwzAURs2fRCmdeIEsDAyBe23XscdSQUEqdIHZchynmKZxZAdV8PQElaHTN5yjbziEXCHcIkBxhyiRy6nQVB2RiSokm3JgBSqQx2SEAjFnjKuTQyYVPSUjYEBzVXB2Ti5S-gQAWig6IvezbOFa13ubzZp1iL7_2GahzV6-mt7nybUpxOzV9bsQNylb-npQty5bdcP4H9P70F6Ss9o0yU3-d0zeHx_e5k_5crV4ns-WeUdR9Tmva46lM0rRCktDRQmmdMLIShalmAJYKzlK49AKV7nKGgmOcQZSWC55xcbkev_bmWRNU0fTWp90F_3WxG-NCgUdIg3ezd5LA2rXLuoyhE3SCPovoj6IyH4B5dFe8A</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pan, Yantao</creator><creator>Peng, Wei</creator><creator>Lu, Xicheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><author>Pan, Yantao ; Peng, Wei ; Lu, Xicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4ff41bea992d1ba26b0abe6a8d87b6500cc8418ae1c6ededca80e343086c484d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Lifetime Optimization</topic><topic>Sensor Networks</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yantao</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Lu, Xicheng</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yantao</au><au>Peng, Wei</au><au>Lu, Xicheng</au><au>Li, Wei</au><au>Cheng, Xiuzhen</au><au>Znati, Taieb</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>295</spage><epage>306</epage><pages>295-306</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540371892</isbn><isbn>3540371893</isbn><eisbn>9783540371908</eisbn><eisbn>3540371907</eisbn><abstract>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11814856_29</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.295-306 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19162007 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Genetic Algorithm Lifetime Optimization Sensor Networks Software |
title | A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Genetic%20Algorithm%20on%20Multi-sensor%20Networks%20Lifetime%20Optimization&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Pan,%20Yantao&rft.date=2006&rft.spage=295&rft.epage=306&rft.pages=295-306&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540371892&rft.isbn_list=3540371893&rft_id=info:doi/10.1007/11814856_29&rft_dat=%3Cpascalfrancis_sprin%3E19162007%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540371908&rft.eisbn_list=3540371907&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |