A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization

Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pan, Yantao, Peng, Wei, Lu, Xicheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 295
container_title
container_volume
creator Pan, Yantao
Peng, Wei
Lu, Xicheng
description Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.
doi_str_mv 10.1007/11814856_29
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19162007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19162007</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4ff41bea992d1ba26b0abe6a8d87b6500cc8418ae1c6ededca80e343086c484d3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURs2fRCmdeIEsDAyBe23XscdSQUEqdIHZchynmKZxZAdV8PQElaHTN5yjbziEXCHcIkBxhyiRy6nQVB2RiSokm3JgBSqQx2SEAjFnjKuTQyYVPSUjYEBzVXB2Ti5S-gQAWig6IvezbOFa13ubzZp1iL7_2GahzV6-mt7nybUpxOzV9bsQNylb-npQty5bdcP4H9P70F6Ss9o0yU3-d0zeHx_e5k_5crV4ns-WeUdR9Tmva46lM0rRCktDRQmmdMLIShalmAJYKzlK49AKV7nKGgmOcQZSWC55xcbkev_bmWRNU0fTWp90F_3WxG-NCgUdIg3ezd5LA2rXLuoyhE3SCPovoj6IyH4B5dFe8A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><source>Springer Books</source><creator>Pan, Yantao ; Peng, Wei ; Lu, Xicheng</creator><contributor>Li, Wei ; Cheng, Xiuzhen ; Znati, Taieb</contributor><creatorcontrib>Pan, Yantao ; Peng, Wei ; Lu, Xicheng ; Li, Wei ; Cheng, Xiuzhen ; Znati, Taieb</creatorcontrib><description>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540371892</identifier><identifier>ISBN: 3540371893</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540371908</identifier><identifier>EISBN: 3540371907</identifier><identifier>DOI: 10.1007/11814856_29</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Genetic Algorithm ; Lifetime Optimization ; Sensor Networks ; Software</subject><ispartof>Lecture notes in computer science, 2006, p.295-306</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11814856_29$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11814856_29$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19162007$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Li, Wei</contributor><contributor>Cheng, Xiuzhen</contributor><contributor>Znati, Taieb</contributor><creatorcontrib>Pan, Yantao</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Lu, Xicheng</creatorcontrib><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><title>Lecture notes in computer science</title><description>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Lifetime Optimization</subject><subject>Sensor Networks</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540371892</isbn><isbn>3540371893</isbn><isbn>9783540371908</isbn><isbn>3540371907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkL1OwzAURs2fRCmdeIEsDAyBe23XscdSQUEqdIHZchynmKZxZAdV8PQElaHTN5yjbziEXCHcIkBxhyiRy6nQVB2RiSokm3JgBSqQx2SEAjFnjKuTQyYVPSUjYEBzVXB2Ti5S-gQAWig6IvezbOFa13ubzZp1iL7_2GahzV6-mt7nybUpxOzV9bsQNylb-npQty5bdcP4H9P70F6Ss9o0yU3-d0zeHx_e5k_5crV4ns-WeUdR9Tmva46lM0rRCktDRQmmdMLIShalmAJYKzlK49AKV7nKGgmOcQZSWC55xcbkev_bmWRNU0fTWp90F_3WxG-NCgUdIg3ezd5LA2rXLuoyhE3SCPovoj6IyH4B5dFe8A</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pan, Yantao</creator><creator>Peng, Wei</creator><creator>Lu, Xicheng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</title><author>Pan, Yantao ; Peng, Wei ; Lu, Xicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4ff41bea992d1ba26b0abe6a8d87b6500cc8418ae1c6ededca80e343086c484d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Lifetime Optimization</topic><topic>Sensor Networks</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yantao</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Lu, Xicheng</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yantao</au><au>Peng, Wei</au><au>Lu, Xicheng</au><au>Li, Wei</au><au>Cheng, Xiuzhen</au><au>Znati, Taieb</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>295</spage><epage>306</epage><pages>295-306</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540371892</isbn><isbn>3540371893</isbn><eisbn>9783540371908</eisbn><eisbn>3540371907</eisbn><abstract>Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11814856_29</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.295-306
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19162007
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Genetic Algorithm
Lifetime Optimization
Sensor Networks
Software
title A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Genetic%20Algorithm%20on%20Multi-sensor%20Networks%20Lifetime%20Optimization&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Pan,%20Yantao&rft.date=2006&rft.spage=295&rft.epage=306&rft.pages=295-306&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540371892&rft.isbn_list=3540371893&rft_id=info:doi/10.1007/11814856_29&rft_dat=%3Cpascalfrancis_sprin%3E19162007%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540371908&rft.eisbn_list=3540371907&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true