Communicative Signals as the Key to Automated Understanding of Simple Bar Charts
This paper discusses the types of communicative signals that frequently appear in simple bar charts and how we exploit them as evidence in our system for inferring the intended message of an information graphic. Through a series of examples, we demonstrate the impact that various types of communicat...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Elzer, Stephanie Carberry, Sandra Demir, Seniz |
description | This paper discusses the types of communicative signals that frequently appear in simple bar charts and how we exploit them as evidence in our system for inferring the intended message of an information graphic. Through a series of examples, we demonstrate the impact that various types of communicative signals, namely salience, captions and estimated perceptual task effort, have on the intended message inferred by our implemented system. |
doi_str_mv | 10.1007/11783183_5 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19161809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19161809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-1cb3850366f3009cb3ccecd7aa61b434cf514b9c1a31c742b383f027911b8a283</originalsourceid><addsrcrecordid>eNpFkFtLAzEQheMNrLUv_oK8CL6sZnaylzzWxRsWFLTg2zKbzbar3QtJKvTfG7HgvAzD-ebAOYxdgLgGIbIbgCxHyLFMDtgZJlJgksby45BNIAWIEKU6YjMVoL2GeMwmAkUcqUziKZs59ynCIGSgYMJei6Hrtn2rybffhr-1q542jpPjfm34s9lxP_D51g8deVPzZV8b6zz1dduv-NCEh27cGH5Llhdrst6ds5MmOJjZfk_Z8v7uvXiMFi8PT8V8EY0x5D4CXWGeCEzTBoVQ4dLa6DojSqGSKHWTgKyUBkLQmYwDjY2IMwVQ5RTnOGWXf74jOU2bxlKvW1eOtu3I7soQLoVcqMBd_XEuSP3K2LIahi9Xgih_Gy3_G8UfgEth8w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Communicative Signals as the Key to Automated Understanding of Simple Bar Charts</title><source>Springer Books</source><creator>Elzer, Stephanie ; Carberry, Sandra ; Demir, Seniz</creator><contributor>Barker-Plummer, Dave ; Swoboda, Nik ; Cox, Richard</contributor><creatorcontrib>Elzer, Stephanie ; Carberry, Sandra ; Demir, Seniz ; Barker-Plummer, Dave ; Swoboda, Nik ; Cox, Richard</creatorcontrib><description>This paper discusses the types of communicative signals that frequently appear in simple bar charts and how we exploit them as evidence in our system for inferring the intended message of an information graphic. Through a series of examples, we demonstrate the impact that various types of communicative signals, namely salience, captions and estimated perceptual task effort, have on the intended message inferred by our implemented system.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540356233</identifier><identifier>ISBN: 3540356231</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035624X</identifier><identifier>EISBN: 9783540356240</identifier><identifier>DOI: 10.1007/11783183_5</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian Network ; Communicative Signal ; Computer science; control theory; systems ; Exact sciences and technology ; Graphic Designer ; Information Graphic ; Perceptual Task</subject><ispartof>Diagrammatic Representation and Inference, 2006, p.25-39</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11783183_5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11783183_5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19161809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Barker-Plummer, Dave</contributor><contributor>Swoboda, Nik</contributor><contributor>Cox, Richard</contributor><creatorcontrib>Elzer, Stephanie</creatorcontrib><creatorcontrib>Carberry, Sandra</creatorcontrib><creatorcontrib>Demir, Seniz</creatorcontrib><title>Communicative Signals as the Key to Automated Understanding of Simple Bar Charts</title><title>Diagrammatic Representation and Inference</title><description>This paper discusses the types of communicative signals that frequently appear in simple bar charts and how we exploit them as evidence in our system for inferring the intended message of an information graphic. Through a series of examples, we demonstrate the impact that various types of communicative signals, namely salience, captions and estimated perceptual task effort, have on the intended message inferred by our implemented system.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian Network</subject><subject>Communicative Signal</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphic Designer</subject><subject>Information Graphic</subject><subject>Perceptual Task</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540356233</isbn><isbn>3540356231</isbn><isbn>354035624X</isbn><isbn>9783540356240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkFtLAzEQheMNrLUv_oK8CL6sZnaylzzWxRsWFLTg2zKbzbar3QtJKvTfG7HgvAzD-ebAOYxdgLgGIbIbgCxHyLFMDtgZJlJgksby45BNIAWIEKU6YjMVoL2GeMwmAkUcqUziKZs59ynCIGSgYMJei6Hrtn2rybffhr-1q542jpPjfm34s9lxP_D51g8deVPzZV8b6zz1dduv-NCEh27cGH5Llhdrst6ds5MmOJjZfk_Z8v7uvXiMFi8PT8V8EY0x5D4CXWGeCEzTBoVQ4dLa6DojSqGSKHWTgKyUBkLQmYwDjY2IMwVQ5RTnOGWXf74jOU2bxlKvW1eOtu3I7soQLoVcqMBd_XEuSP3K2LIahi9Xgih_Gy3_G8UfgEth8w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Elzer, Stephanie</creator><creator>Carberry, Sandra</creator><creator>Demir, Seniz</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Communicative Signals as the Key to Automated Understanding of Simple Bar Charts</title><author>Elzer, Stephanie ; Carberry, Sandra ; Demir, Seniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-1cb3850366f3009cb3ccecd7aa61b434cf514b9c1a31c742b383f027911b8a283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian Network</topic><topic>Communicative Signal</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphic Designer</topic><topic>Information Graphic</topic><topic>Perceptual Task</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elzer, Stephanie</creatorcontrib><creatorcontrib>Carberry, Sandra</creatorcontrib><creatorcontrib>Demir, Seniz</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elzer, Stephanie</au><au>Carberry, Sandra</au><au>Demir, Seniz</au><au>Barker-Plummer, Dave</au><au>Swoboda, Nik</au><au>Cox, Richard</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Communicative Signals as the Key to Automated Understanding of Simple Bar Charts</atitle><btitle>Diagrammatic Representation and Inference</btitle><date>2006</date><risdate>2006</risdate><spage>25</spage><epage>39</epage><pages>25-39</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540356233</isbn><isbn>3540356231</isbn><eisbn>354035624X</eisbn><eisbn>9783540356240</eisbn><abstract>This paper discusses the types of communicative signals that frequently appear in simple bar charts and how we exploit them as evidence in our system for inferring the intended message of an information graphic. Through a series of examples, we demonstrate the impact that various types of communicative signals, namely salience, captions and estimated perceptual task effort, have on the intended message inferred by our implemented system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11783183_5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Diagrammatic Representation and Inference, 2006, p.25-39 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19161809 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Bayesian Network Communicative Signal Computer science control theory systems Exact sciences and technology Graphic Designer Information Graphic Perceptual Task |
title | Communicative Signals as the Key to Automated Understanding of Simple Bar Charts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Communicative%20Signals%20as%20the%20Key%20to%20Automated%20Understanding%20of%20Simple%20Bar%20Charts&rft.btitle=Diagrammatic%20Representation%20and%20Inference&rft.au=Elzer,%20Stephanie&rft.date=2006&rft.spage=25&rft.epage=39&rft.pages=25-39&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540356233&rft.isbn_list=3540356231&rft_id=info:doi/10.1007/11783183_5&rft_dat=%3Cpascalfrancis_sprin%3E19161809%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035624X&rft.eisbn_list=9783540356240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |