Multi-dimensional Aggregation for Temporal Data

Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Böhlen, Michael, Gamper, Johann, Jensen, Christian S.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue
container_start_page 257
container_title
container_volume
creator Böhlen, Michael
Gamper, Johann
Jensen, Christian S.
description Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture when the data hold. In temporal databases, intervals typically capture the states of reality that the data apply to, or capture when the data are, or were, part of the current database state. This paper proposes a new aggregation operator that addresses several challenges posed by interval data. First, the intervals to be associated with the result tuples may not be known in advance, but depend on the actual data. Such unknown intervals are accommodated by allowing result groups that are specified only partially. Second, the operator contends with the case where an interval associated with data expresses that the data holds for each point in the interval, as well as the case where the data holds only for the entire interval, but must be adjusted to apply to sub-intervals. The paper reports on an implementation of the new operator and on an empirical study that indicates that the operator scales to large data sets and is competitive with respect to other temporal aggregation algorithms.
doi_str_mv 10.1007/11687238_18
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19152144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19152144</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-78539a0795eecead7635754256b40bd31cfb63a2bd615e38518c812aa80b3cbb3</originalsourceid><addsrcrecordid>eNpNkLtOw0AURJeXRAip-IE0FBQme_fus4zCUwqiCbV1115bBse2dk3B32MUkJhmNDqjKYaxK-C3wLlZAWhrBNoc7BFbOGNRSY7CaXDHbAYaIEOU7oRd_AHuTtmMIxeZMxLP2SKldz4JQTllZ2z18tmOTVY2-9Clpu-oXa7rOoaaxiktqz4ud2E_9HECdzTSJTurqE1h8etz9vZwv9s8ZdvXx-fNepsNQukxM1ahI26cCqEIVBqNyig5MS-5LxGKymsk4UsNKqBVYAsLgshyj4X3OGfXh92BUkFtFakrmpQPsdlT_MrBgRIg5dS7OfTShLo6xNz3_UfKgec_j-X_HsNvaa5W1Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Multi-dimensional Aggregation for Temporal Data</title><source>Springer Books</source><creator>Böhlen, Michael ; Gamper, Johann ; Jensen, Christian S.</creator><contributor>Scholl, Marc H. ; Matthes, Florian ; Boehm, Klemens ; Schmidt, Joachim W. ; Boehm, Christian ; Ioannidis, Yannis ; Hatzopoulos, Mike ; Grust, Torsten ; Kemper, Alfons</contributor><creatorcontrib>Böhlen, Michael ; Gamper, Johann ; Jensen, Christian S. ; Scholl, Marc H. ; Matthes, Florian ; Boehm, Klemens ; Schmidt, Joachim W. ; Boehm, Christian ; Ioannidis, Yannis ; Hatzopoulos, Mike ; Grust, Torsten ; Kemper, Alfons</creatorcontrib><description>Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture when the data hold. In temporal databases, intervals typically capture the states of reality that the data apply to, or capture when the data are, or were, part of the current database state. This paper proposes a new aggregation operator that addresses several challenges posed by interval data. First, the intervals to be associated with the result tuples may not be known in advance, but depend on the actual data. Such unknown intervals are accommodated by allowing result groups that are specified only partially. Second, the operator contends with the case where an interval associated with data expresses that the data holds for each point in the interval, as well as the case where the data holds only for the entire interval, but must be adjusted to apply to sub-intervals. The paper reports on an implementation of the new operator and on an empirical study that indicates that the operator scales to large data sets and is competitive with respect to other temporal aggregation algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540329609</identifier><identifier>ISBN: 9783540329602</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540329619</identifier><identifier>EISBN: 3540329617</identifier><identifier>DOI: 10.1007/11687238_18</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aggregate Function ; Aggregation Operator ; Applied sciences ; Computer science; control theory; systems ; Constant Interval ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Result Group ; Software ; Temporal Aggregation</subject><ispartof>Advances in Database Technology - EDBT 2006, 2006, p.257-275</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11687238_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11687238_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19152144$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Scholl, Marc H.</contributor><contributor>Matthes, Florian</contributor><contributor>Boehm, Klemens</contributor><contributor>Schmidt, Joachim W.</contributor><contributor>Boehm, Christian</contributor><contributor>Ioannidis, Yannis</contributor><contributor>Hatzopoulos, Mike</contributor><contributor>Grust, Torsten</contributor><contributor>Kemper, Alfons</contributor><creatorcontrib>Böhlen, Michael</creatorcontrib><creatorcontrib>Gamper, Johann</creatorcontrib><creatorcontrib>Jensen, Christian S.</creatorcontrib><title>Multi-dimensional Aggregation for Temporal Data</title><title>Advances in Database Technology - EDBT 2006</title><description>Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture when the data hold. In temporal databases, intervals typically capture the states of reality that the data apply to, or capture when the data are, or were, part of the current database state. This paper proposes a new aggregation operator that addresses several challenges posed by interval data. First, the intervals to be associated with the result tuples may not be known in advance, but depend on the actual data. Such unknown intervals are accommodated by allowing result groups that are specified only partially. Second, the operator contends with the case where an interval associated with data expresses that the data holds for each point in the interval, as well as the case where the data holds only for the entire interval, but must be adjusted to apply to sub-intervals. The paper reports on an implementation of the new operator and on an empirical study that indicates that the operator scales to large data sets and is competitive with respect to other temporal aggregation algorithms.</description><subject>Aggregate Function</subject><subject>Aggregation Operator</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Constant Interval</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Result Group</subject><subject>Software</subject><subject>Temporal Aggregation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540329609</isbn><isbn>9783540329602</isbn><isbn>9783540329619</isbn><isbn>3540329617</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkLtOw0AURJeXRAip-IE0FBQme_fus4zCUwqiCbV1115bBse2dk3B32MUkJhmNDqjKYaxK-C3wLlZAWhrBNoc7BFbOGNRSY7CaXDHbAYaIEOU7oRd_AHuTtmMIxeZMxLP2SKldz4JQTllZ2z18tmOTVY2-9Clpu-oXa7rOoaaxiktqz4ud2E_9HECdzTSJTurqE1h8etz9vZwv9s8ZdvXx-fNepsNQukxM1ahI26cCqEIVBqNyig5MS-5LxGKymsk4UsNKqBVYAsLgshyj4X3OGfXh92BUkFtFakrmpQPsdlT_MrBgRIg5dS7OfTShLo6xNz3_UfKgec_j-X_HsNvaa5W1Q</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Böhlen, Michael</creator><creator>Gamper, Johann</creator><creator>Jensen, Christian S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Multi-dimensional Aggregation for Temporal Data</title><author>Böhlen, Michael ; Gamper, Johann ; Jensen, Christian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-78539a0795eecead7635754256b40bd31cfb63a2bd615e38518c812aa80b3cbb3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aggregate Function</topic><topic>Aggregation Operator</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Constant Interval</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Result Group</topic><topic>Software</topic><topic>Temporal Aggregation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhlen, Michael</creatorcontrib><creatorcontrib>Gamper, Johann</creatorcontrib><creatorcontrib>Jensen, Christian S.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhlen, Michael</au><au>Gamper, Johann</au><au>Jensen, Christian S.</au><au>Scholl, Marc H.</au><au>Matthes, Florian</au><au>Boehm, Klemens</au><au>Schmidt, Joachim W.</au><au>Boehm, Christian</au><au>Ioannidis, Yannis</au><au>Hatzopoulos, Mike</au><au>Grust, Torsten</au><au>Kemper, Alfons</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multi-dimensional Aggregation for Temporal Data</atitle><btitle>Advances in Database Technology - EDBT 2006</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>257</spage><epage>275</epage><pages>257-275</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540329609</isbn><isbn>9783540329602</isbn><eisbn>9783540329619</eisbn><eisbn>3540329617</eisbn><abstract>Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture when the data hold. In temporal databases, intervals typically capture the states of reality that the data apply to, or capture when the data are, or were, part of the current database state. This paper proposes a new aggregation operator that addresses several challenges posed by interval data. First, the intervals to be associated with the result tuples may not be known in advance, but depend on the actual data. Such unknown intervals are accommodated by allowing result groups that are specified only partially. Second, the operator contends with the case where an interval associated with data expresses that the data holds for each point in the interval, as well as the case where the data holds only for the entire interval, but must be adjusted to apply to sub-intervals. The paper reports on an implementation of the new operator and on an empirical study that indicates that the operator scales to large data sets and is competitive with respect to other temporal aggregation algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11687238_18</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Database Technology - EDBT 2006, 2006, p.257-275
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19152144
source Springer Books
subjects Aggregate Function
Aggregation Operator
Applied sciences
Computer science
control theory
systems
Constant Interval
Data processing. List processing. Character string processing
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Result Group
Software
Temporal Aggregation
title Multi-dimensional Aggregation for Temporal Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multi-dimensional%20Aggregation%20for%20Temporal%20Data&rft.btitle=Advances%20in%20Database%20Technology%20-%20EDBT%202006&rft.au=B%C3%B6hlen,%20Michael&rft.date=2006&rft.spage=257&rft.epage=275&rft.pages=257-275&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540329609&rft.isbn_list=9783540329602&rft_id=info:doi/10.1007/11687238_18&rft_dat=%3Cpascalfrancis_sprin%3E19152144%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540329619&rft.eisbn_list=3540329617&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true