Histograms, Wavelets and Neural Networks Applied to Image Retrieval

We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gonzalez, Alain C., Sossa, Juan H., Riveron, Edgardo Manuel Felipe, Pogrebnyak, Oleksiy
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue
container_start_page 820
container_title
container_volume
creator Gonzalez, Alain C.
Sossa, Juan H.
Riveron, Edgardo Manuel Felipe
Pogrebnyak, Oleksiy
description We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the air, 5) small aircrafts on land, and 6) small aircrafts in the air. During training, a wavelet-based description of each image is first obtained using Daubechies 4-wavelet transformation. The resulting coefficients are then used to train a neural network. During classification, test images are presented to the trained system. The coefficients are obtained from the Daubechies transform from histograms of a decomposition of the image into square sub-images of each channel of the original image. 120 images were used for training and 240 for independent testing. An 88% correct identification rate was obtained.
doi_str_mv 10.1007/11925231_78
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19151764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19151764</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-730aad292889df81734809c5f9e76afe618e8d35ea6b80dca23009dfb81036a13</originalsourceid><addsrcrecordid>eNpNkEtLw0AURscX2Nau_AOzcSEYvXdmMo9lKWoLRUEUl-E2mZTYtAkzacV_b6RduDqLc_gWH2PXCPcIYB4QnUiFxMzYEzZ2xspUgXKQWn3KBqgREymVO2PDoxBanbMBSBCJM0pesmGMXwAgjBMDNp1VsWtWgTbxjn_S3te-i5y2BX_xu0B1j-67CevIJ21bV77gXcPnG1p5_ua7UPk91VfsoqQ6-vGRI_bx9Pg-nSWL1-f5dLJIWoGuS4wEokI4Ya0rSotGKgsuT0vnjabSa7TeFjL1pJcWipyEBOjLpUWQmlCO2M1ht6WYU10G2uZVzNpQbSj8ZOgwRaNV390eutir7cqHbNk065ghZH8XZv8ulL-sHV00</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Histograms, Wavelets and Neural Networks Applied to Image Retrieval</title><source>Springer Books</source><creator>Gonzalez, Alain C. ; Sossa, Juan H. ; Riveron, Edgardo Manuel Felipe ; Pogrebnyak, Oleksiy</creator><contributor>Reyes-Garcia, Carlos Alberto ; Gelbukh, Alexander</contributor><creatorcontrib>Gonzalez, Alain C. ; Sossa, Juan H. ; Riveron, Edgardo Manuel Felipe ; Pogrebnyak, Oleksiy ; Reyes-Garcia, Carlos Alberto ; Gelbukh, Alexander</creatorcontrib><description>We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the air, 5) small aircrafts on land, and 6) small aircrafts in the air. During training, a wavelet-based description of each image is first obtained using Daubechies 4-wavelet transformation. The resulting coefficients are then used to train a neural network. During classification, test images are presented to the trained system. The coefficients are obtained from the Daubechies transform from histograms of a decomposition of the image into square sub-images of each channel of the original image. 120 images were used for training and 240 for independent testing. An 88% correct identification rate was obtained.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540490264</identifier><identifier>ISBN: 9783540490265</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540490586</identifier><identifier>EISBN: 3540490582</identifier><identifier>DOI: 10.1007/11925231_78</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Correct Identification Rate ; Exact sciences and technology ; Image Retrieval ; Information systems. Data bases ; Memory organisation. Data processing ; Neural Network Apply ; Pattern Recognition Letter ; Pattern recognition. Digital image processing. Computational geometry ; Software ; Wavelet Coefficient</subject><ispartof>Lecture notes in computer science, 2006, p.820-827</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11925231_78$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11925231_78$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19151764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Reyes-Garcia, Carlos Alberto</contributor><contributor>Gelbukh, Alexander</contributor><creatorcontrib>Gonzalez, Alain C.</creatorcontrib><creatorcontrib>Sossa, Juan H.</creatorcontrib><creatorcontrib>Riveron, Edgardo Manuel Felipe</creatorcontrib><creatorcontrib>Pogrebnyak, Oleksiy</creatorcontrib><title>Histograms, Wavelets and Neural Networks Applied to Image Retrieval</title><title>Lecture notes in computer science</title><description>We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the air, 5) small aircrafts on land, and 6) small aircrafts in the air. During training, a wavelet-based description of each image is first obtained using Daubechies 4-wavelet transformation. The resulting coefficients are then used to train a neural network. During classification, test images are presented to the trained system. The coefficients are obtained from the Daubechies transform from histograms of a decomposition of the image into square sub-images of each channel of the original image. 120 images were used for training and 240 for independent testing. An 88% correct identification rate was obtained.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Correct Identification Rate</subject><subject>Exact sciences and technology</subject><subject>Image Retrieval</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Neural Network Apply</subject><subject>Pattern Recognition Letter</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Software</subject><subject>Wavelet Coefficient</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540490264</isbn><isbn>9783540490265</isbn><isbn>9783540490586</isbn><isbn>3540490582</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtLw0AURscX2Nau_AOzcSEYvXdmMo9lKWoLRUEUl-E2mZTYtAkzacV_b6RduDqLc_gWH2PXCPcIYB4QnUiFxMzYEzZ2xspUgXKQWn3KBqgREymVO2PDoxBanbMBSBCJM0pesmGMXwAgjBMDNp1VsWtWgTbxjn_S3te-i5y2BX_xu0B1j-67CevIJ21bV77gXcPnG1p5_ua7UPk91VfsoqQ6-vGRI_bx9Pg-nSWL1-f5dLJIWoGuS4wEokI4Ya0rSotGKgsuT0vnjabSa7TeFjL1pJcWipyEBOjLpUWQmlCO2M1ht6WYU10G2uZVzNpQbSj8ZOgwRaNV390eutir7cqHbNk065ghZH8XZv8ulL-sHV00</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Gonzalez, Alain C.</creator><creator>Sossa, Juan H.</creator><creator>Riveron, Edgardo Manuel Felipe</creator><creator>Pogrebnyak, Oleksiy</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Histograms, Wavelets and Neural Networks Applied to Image Retrieval</title><author>Gonzalez, Alain C. ; Sossa, Juan H. ; Riveron, Edgardo Manuel Felipe ; Pogrebnyak, Oleksiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-730aad292889df81734809c5f9e76afe618e8d35ea6b80dca23009dfb81036a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Correct Identification Rate</topic><topic>Exact sciences and technology</topic><topic>Image Retrieval</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Neural Network Apply</topic><topic>Pattern Recognition Letter</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Software</topic><topic>Wavelet Coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Alain C.</creatorcontrib><creatorcontrib>Sossa, Juan H.</creatorcontrib><creatorcontrib>Riveron, Edgardo Manuel Felipe</creatorcontrib><creatorcontrib>Pogrebnyak, Oleksiy</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Alain C.</au><au>Sossa, Juan H.</au><au>Riveron, Edgardo Manuel Felipe</au><au>Pogrebnyak, Oleksiy</au><au>Reyes-Garcia, Carlos Alberto</au><au>Gelbukh, Alexander</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Histograms, Wavelets and Neural Networks Applied to Image Retrieval</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>820</spage><epage>827</epage><pages>820-827</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540490264</isbn><isbn>9783540490265</isbn><eisbn>9783540490586</eisbn><eisbn>3540490582</eisbn><abstract>We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the air, 5) small aircrafts on land, and 6) small aircrafts in the air. During training, a wavelet-based description of each image is first obtained using Daubechies 4-wavelet transformation. The resulting coefficients are then used to train a neural network. During classification, test images are presented to the trained system. The coefficients are obtained from the Daubechies transform from histograms of a decomposition of the image into square sub-images of each channel of the original image. 120 images were used for training and 240 for independent testing. An 88% correct identification rate was obtained.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11925231_78</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.820-827
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19151764
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Correct Identification Rate
Exact sciences and technology
Image Retrieval
Information systems. Data bases
Memory organisation. Data processing
Neural Network Apply
Pattern Recognition Letter
Pattern recognition. Digital image processing. Computational geometry
Software
Wavelet Coefficient
title Histograms, Wavelets and Neural Networks Applied to Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Histograms,%20Wavelets%20and%20Neural%20Networks%20Applied%20to%20Image%20Retrieval&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Gonzalez,%20Alain%20C.&rft.date=2006&rft.spage=820&rft.epage=827&rft.pages=820-827&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540490264&rft.isbn_list=9783540490265&rft_id=info:doi/10.1007/11925231_78&rft_dat=%3Cpascalfrancis_sprin%3E19151764%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540490586&rft.eisbn_list=3540490582&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true