Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification

The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Coeurjolly, David, Dupont, Florent, Jospin, Laurent, Sivignon, Isabelle
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue
container_start_page 413
container_title
container_volume 4245
creator Coeurjolly, David
Dupont, Florent
Jospin, Laurent
Sivignon, Isabelle
description The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.
doi_str_mv 10.1007/11907350_35
format Conference Proceeding
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19150517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00185161v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h290t-872d518896338676ebbd67f794473f51eb859e931e757ac1806bcd23f8ddf6123</originalsourceid><addsrcrecordid>eNpNUclOwzAQNZtEKT3xA7lw4BDwxHFsH6uyFKmoiFKulpPYjWmWyk4rla8npWxzmdG85fAeQheArwFjdgMgMCMUS0IP0EAwTmiMY5bQiB-iHiQAISGxOEJnPwBEx6iHCY5CwWJyigbev-NuCLAohh5aTletreyHam1TB7Os0JX2gWlc0BY6eNEb7bxNSx3cWp853ergrSnXlQ6em3Jb6Nz9SOfe1ovgSbms2B2jddr5zGy1Kq2x2RfnHJ0YVXo9-N59NL-_ex2Nw8n04XE0nIRFJHAbchblFDgXCSE8YYlO0zxhhok4ZsRQ0CmnQgsCmlGmMuA4SbM8IobnuUkgIn10tfctVClXzlbKbWWjrBwPJ3L3wxg47dLaQMe93HNXymeqNE7VmfW_KhBAMQX25-k7qF5oJ9OmWXoJWO6akf-aIZ_M9nrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><source>Springer Books</source><creator>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle</creator><contributor>Kuba, Attila ; Nyúl, László G. ; Palágyi, Kálmán</contributor><creatorcontrib>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle ; Kuba, Attila ; Nyúl, László G. ; Palágyi, Kálmán</creatorcontrib><description>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540476512</identifier><identifier>ISBN: 9783540476511</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540476528</identifier><identifier>EISBN: 3540476520</identifier><identifier>DOI: 10.1007/11907350_35</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Discrete Object ; Discrete Volume ; Euclidean Plane ; Exact sciences and technology ; Image Processing ; Linear Constraint ; Marching Cube ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Discrete Geometry for Computer Imagery, 2006, Vol.4245, p.413-424</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3164-8697 ; 0000-0002-0243-2347 ; 0000-0001-6611-4420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11907350_35$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11907350_35$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,780,781,785,790,791,794,886,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19150517$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00185161$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kuba, Attila</contributor><contributor>Nyúl, László G.</contributor><contributor>Palágyi, Kálmán</contributor><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Jospin, Laurent</creatorcontrib><creatorcontrib>Sivignon, Isabelle</creatorcontrib><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><title>Discrete Geometry for Computer Imagery</title><description>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Object</subject><subject>Discrete Volume</subject><subject>Euclidean Plane</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Linear Constraint</subject><subject>Marching Cube</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540476512</isbn><isbn>9783540476511</isbn><isbn>9783540476528</isbn><isbn>3540476520</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUclOwzAQNZtEKT3xA7lw4BDwxHFsH6uyFKmoiFKulpPYjWmWyk4rla8npWxzmdG85fAeQheArwFjdgMgMCMUS0IP0EAwTmiMY5bQiB-iHiQAISGxOEJnPwBEx6iHCY5CwWJyigbev-NuCLAohh5aTletreyHam1TB7Os0JX2gWlc0BY6eNEb7bxNSx3cWp853ergrSnXlQ6em3Jb6Nz9SOfe1ovgSbms2B2jddr5zGy1Kq2x2RfnHJ0YVXo9-N59NL-_ex2Nw8n04XE0nIRFJHAbchblFDgXCSE8YYlO0zxhhok4ZsRQ0CmnQgsCmlGmMuA4SbM8IobnuUkgIn10tfctVClXzlbKbWWjrBwPJ3L3wxg47dLaQMe93HNXymeqNE7VmfW_KhBAMQX25-k7qF5oJ9OmWXoJWO6akf-aIZ_M9nrQ</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Coeurjolly, David</creator><creator>Dupont, Florent</creator><creator>Jospin, Laurent</creator><creator>Sivignon, Isabelle</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid></search><sort><creationdate>20060101</creationdate><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><author>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h290t-872d518896338676ebbd67f794473f51eb859e931e757ac1806bcd23f8ddf6123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Object</topic><topic>Discrete Volume</topic><topic>Euclidean Plane</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Linear Constraint</topic><topic>Marching Cube</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Jospin, Laurent</creatorcontrib><creatorcontrib>Sivignon, Isabelle</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coeurjolly, David</au><au>Dupont, Florent</au><au>Jospin, Laurent</au><au>Sivignon, Isabelle</au><au>Kuba, Attila</au><au>Nyúl, László G.</au><au>Palágyi, Kálmán</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</atitle><btitle>Discrete Geometry for Computer Imagery</btitle><date>2006-01-01</date><risdate>2006</risdate><volume>4245</volume><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540476512</isbn><isbn>9783540476511</isbn><eisbn>9783540476528</eisbn><eisbn>3540476520</eisbn><abstract>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11907350_35</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Discrete Geometry for Computer Imagery, 2006, Vol.4245, p.413-424
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19150517
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Discrete Object
Discrete Volume
Euclidean Plane
Exact sciences and technology
Image Processing
Linear Constraint
Marching Cube
Pattern recognition. Digital image processing. Computational geometry
title Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20Schemes%20for%20the%20Reversible%20Discrete%20Volume%20Polyhedrization%20Using%20Marching%20Cubes%20Simplification&rft.btitle=Discrete%20Geometry%20for%20Computer%20Imagery&rft.au=Coeurjolly,%20David&rft.date=2006-01-01&rft.volume=4245&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540476512&rft.isbn_list=9783540476511&rft_id=info:doi/10.1007/11907350_35&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00185161v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540476528&rft.eisbn_list=3540476520&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true