Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification
The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surf...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | |
container_start_page | 413 |
container_title | |
container_volume | 4245 |
creator | Coeurjolly, David Dupont, Florent Jospin, Laurent Sivignon, Isabelle |
description | The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information. |
doi_str_mv | 10.1007/11907350_35 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19150517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00185161v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h290t-872d518896338676ebbd67f794473f51eb859e931e757ac1806bcd23f8ddf6123</originalsourceid><addsrcrecordid>eNpNUclOwzAQNZtEKT3xA7lw4BDwxHFsH6uyFKmoiFKulpPYjWmWyk4rla8npWxzmdG85fAeQheArwFjdgMgMCMUS0IP0EAwTmiMY5bQiB-iHiQAISGxOEJnPwBEx6iHCY5CwWJyigbev-NuCLAohh5aTletreyHam1TB7Os0JX2gWlc0BY6eNEb7bxNSx3cWp853ergrSnXlQ6em3Jb6Nz9SOfe1ovgSbms2B2jddr5zGy1Kq2x2RfnHJ0YVXo9-N59NL-_ex2Nw8n04XE0nIRFJHAbchblFDgXCSE8YYlO0zxhhok4ZsRQ0CmnQgsCmlGmMuA4SbM8IobnuUkgIn10tfctVClXzlbKbWWjrBwPJ3L3wxg47dLaQMe93HNXymeqNE7VmfW_KhBAMQX25-k7qF5oJ9OmWXoJWO6akf-aIZ_M9nrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><source>Springer Books</source><creator>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle</creator><contributor>Kuba, Attila ; Nyúl, László G. ; Palágyi, Kálmán</contributor><creatorcontrib>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle ; Kuba, Attila ; Nyúl, László G. ; Palágyi, Kálmán</creatorcontrib><description>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540476512</identifier><identifier>ISBN: 9783540476511</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540476528</identifier><identifier>EISBN: 3540476520</identifier><identifier>DOI: 10.1007/11907350_35</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Discrete Object ; Discrete Volume ; Euclidean Plane ; Exact sciences and technology ; Image Processing ; Linear Constraint ; Marching Cube ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Discrete Geometry for Computer Imagery, 2006, Vol.4245, p.413-424</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3164-8697 ; 0000-0002-0243-2347 ; 0000-0001-6611-4420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11907350_35$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11907350_35$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,780,781,785,790,791,794,886,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19150517$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00185161$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kuba, Attila</contributor><contributor>Nyúl, László G.</contributor><contributor>Palágyi, Kálmán</contributor><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Jospin, Laurent</creatorcontrib><creatorcontrib>Sivignon, Isabelle</creatorcontrib><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><title>Discrete Geometry for Computer Imagery</title><description>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Object</subject><subject>Discrete Volume</subject><subject>Euclidean Plane</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Linear Constraint</subject><subject>Marching Cube</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540476512</isbn><isbn>9783540476511</isbn><isbn>9783540476528</isbn><isbn>3540476520</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUclOwzAQNZtEKT3xA7lw4BDwxHFsH6uyFKmoiFKulpPYjWmWyk4rla8npWxzmdG85fAeQheArwFjdgMgMCMUS0IP0EAwTmiMY5bQiB-iHiQAISGxOEJnPwBEx6iHCY5CwWJyigbev-NuCLAohh5aTletreyHam1TB7Os0JX2gWlc0BY6eNEb7bxNSx3cWp853ergrSnXlQ6em3Jb6Nz9SOfe1ovgSbms2B2jddr5zGy1Kq2x2RfnHJ0YVXo9-N59NL-_ex2Nw8n04XE0nIRFJHAbchblFDgXCSE8YYlO0zxhhok4ZsRQ0CmnQgsCmlGmMuA4SbM8IobnuUkgIn10tfctVClXzlbKbWWjrBwPJ3L3wxg47dLaQMe93HNXymeqNE7VmfW_KhBAMQX25-k7qF5oJ9OmWXoJWO6akf-aIZ_M9nrQ</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Coeurjolly, David</creator><creator>Dupont, Florent</creator><creator>Jospin, Laurent</creator><creator>Sivignon, Isabelle</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid></search><sort><creationdate>20060101</creationdate><title>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</title><author>Coeurjolly, David ; Dupont, Florent ; Jospin, Laurent ; Sivignon, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h290t-872d518896338676ebbd67f794473f51eb859e931e757ac1806bcd23f8ddf6123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Object</topic><topic>Discrete Volume</topic><topic>Euclidean Plane</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Linear Constraint</topic><topic>Marching Cube</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Jospin, Laurent</creatorcontrib><creatorcontrib>Sivignon, Isabelle</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coeurjolly, David</au><au>Dupont, Florent</au><au>Jospin, Laurent</au><au>Sivignon, Isabelle</au><au>Kuba, Attila</au><au>Nyúl, László G.</au><au>Palágyi, Kálmán</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification</atitle><btitle>Discrete Geometry for Computer Imagery</btitle><date>2006-01-01</date><risdate>2006</risdate><volume>4245</volume><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540476512</isbn><isbn>9783540476511</isbn><eisbn>9783540476528</eisbn><eisbn>3540476520</eisbn><abstract>The aim of this article is to present a reversible and topologically correct construction of a polyhedron from a binary object. The proposed algorithm is based on a Marching Cubes (MC) surface, a digital plane segmentation of the binary object surface and an optimization step to simplify the MC surface using the segmentation information.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11907350_35</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Discrete Geometry for Computer Imagery, 2006, Vol.4245, p.413-424 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19150517 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Discrete Object Discrete Volume Euclidean Plane Exact sciences and technology Image Processing Linear Constraint Marching Cube Pattern recognition. Digital image processing. Computational geometry |
title | Optimization Schemes for the Reversible Discrete Volume Polyhedrization Using Marching Cubes Simplification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20Schemes%20for%20the%20Reversible%20Discrete%20Volume%20Polyhedrization%20Using%20Marching%20Cubes%20Simplification&rft.btitle=Discrete%20Geometry%20for%20Computer%20Imagery&rft.au=Coeurjolly,%20David&rft.date=2006-01-01&rft.volume=4245&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540476512&rft.isbn_list=9783540476511&rft_id=info:doi/10.1007/11907350_35&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00185161v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540476528&rft.eisbn_list=3540476520&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |