Universal Relations and #P-Completeness

This paper follows the methodology introduced by Agrawal and Biswas in [AB92], based on a notion of universality for the relations associated with NP-complete problems. The purpose was to study NP-complete problems by examining the effects of reductions on the solution sets of the associated witness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fournier, Hervé, Malod, Guillaume
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper follows the methodology introduced by Agrawal and Biswas in [AB92], based on a notion of universality for the relations associated with NP-complete problems. The purpose was to study NP-complete problems by examining the effects of reductions on the solution sets of the associated witnessing relations. This provided a useful criterion for NP-completeness while suggesting structural similarities between natural NP-complete problems. We extend these ideas to the class #P. The notion we find also yields a practical criterion for #P-completeness, as illustrated by a varied set of examples, and strengthens the argument for structural homogeneity of natural complete problems.
ISSN:0302-9743
1611-3349
DOI:10.1007/11758471_35