Theory of spontaneous emission of quantum dots in the linear regime

We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2007-10, Vol.19 (40), p.406201-406201 (9)
Hauptverfasser: Zora, A, Simserides, C, Triberis, G P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406201 (9)
container_issue 40
container_start_page 406201
container_title Journal of physics. Condensed matter
container_volume 19
creator Zora, A
Simserides, C
Triberis, G P
description We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In(0.5)Ga(0.5)As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.
doi_str_mv 10.1088/0953-8984/19/40/406201
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_19142977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902339165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6ab6e8de435de4091298c87098b8028a5059eefaec14c51f83f1acb0df3cfed43</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVoaDbbvkLwpc3J3RlL9krHsiRNYCGXBHITWnmUuNiWV7IPefto8XZ7aGlBSDD6ZubnY-wK4RuClCtQJc-lkmKFaiUgnaoAPGML5BXmlZDPH9jiBF2wyxh_AoCQXHxkF0UBQiHAgm0eX8mHt8y7LA6-H01PfooZdU2Mje8P9f1k-nHqstqPMWv6bHylrG16MiEL9NJ09ImdO9NG-nx8l-zp9uZxc5dvH37cb75vcytKHPPK7CqSNQlepgsUFkpauQYldxIKaUooFZEzZFHYEp3kDo3dQe24dVQLvmTX89wh-P1EcdQppaW2nUNrBQXnCqsykV__SfK0tFwrlcBqBm3wMQZyeghNZ8KbRtAH0frgUB8calRagJ5Fp8ar44Zp11F9avtlNgFfjoCJ1rQumN428fd4haJQ63Xi8plr_HD6_ftSPSQVS4Z_8v8J-w5yFaIe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30985799</pqid></control><display><type>article</type><title>Theory of spontaneous emission of quantum dots in the linear regime</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zora, A ; Simserides, C ; Triberis, G P</creator><creatorcontrib>Zora, A ; Simserides, C ; Triberis, G P</creatorcontrib><description>We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In(0.5)Ga(0.5)As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/19/40/406201</identifier><identifier>PMID: 22049100</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Quantum wells</subject><ispartof>Journal of physics. Condensed matter, 2007-10, Vol.19 (40), p.406201-406201 (9)</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6ab6e8de435de4091298c87098b8028a5059eefaec14c51f83f1acb0df3cfed43</citedby><cites>FETCH-LOGICAL-c451t-6ab6e8de435de4091298c87098b8028a5059eefaec14c51f83f1acb0df3cfed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/19/40/406201/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53829,53909</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19142977$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22049100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zora, A</creatorcontrib><creatorcontrib>Simserides, C</creatorcontrib><creatorcontrib>Triberis, G P</creatorcontrib><title>Theory of spontaneous emission of quantum dots in the linear regime</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In(0.5)Ga(0.5)As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Quantum wells</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVoaDbbvkLwpc3J3RlL9krHsiRNYCGXBHITWnmUuNiWV7IPefto8XZ7aGlBSDD6ZubnY-wK4RuClCtQJc-lkmKFaiUgnaoAPGML5BXmlZDPH9jiBF2wyxh_AoCQXHxkF0UBQiHAgm0eX8mHt8y7LA6-H01PfooZdU2Mje8P9f1k-nHqstqPMWv6bHylrG16MiEL9NJ09ImdO9NG-nx8l-zp9uZxc5dvH37cb75vcytKHPPK7CqSNQlepgsUFkpauQYldxIKaUooFZEzZFHYEp3kDo3dQe24dVQLvmTX89wh-P1EcdQppaW2nUNrBQXnCqsykV__SfK0tFwrlcBqBm3wMQZyeghNZ8KbRtAH0frgUB8calRagJ5Fp8ar44Zp11F9avtlNgFfjoCJ1rQumN428fd4haJQ63Xi8plr_HD6_ftSPSQVS4Z_8v8J-w5yFaIe</recordid><startdate>20071010</startdate><enddate>20071010</enddate><creator>Zora, A</creator><creator>Simserides, C</creator><creator>Triberis, G P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071010</creationdate><title>Theory of spontaneous emission of quantum dots in the linear regime</title><author>Zora, A ; Simserides, C ; Triberis, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6ab6e8de435de4091298c87098b8028a5059eefaec14c51f83f1acb0df3cfed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Quantum wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zora, A</creatorcontrib><creatorcontrib>Simserides, C</creatorcontrib><creatorcontrib>Triberis, G P</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zora, A</au><au>Simserides, C</au><au>Triberis, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of spontaneous emission of quantum dots in the linear regime</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2007-10-10</date><risdate>2007</risdate><volume>19</volume><issue>40</issue><spage>406201</spage><epage>406201 (9)</epage><pages>406201-406201 (9)</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In(0.5)Ga(0.5)As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>22049100</pmid><doi>10.1088/0953-8984/19/40/406201</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2007-10, Vol.19 (40), p.406201-406201 (9)
issn 0953-8984
1361-648X
language eng
recordid cdi_pascalfrancis_primary_19142977
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Quantum wells
title Theory of spontaneous emission of quantum dots in the linear regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20spontaneous%20emission%20of%20quantum%20dots%20in%20the%20linear%20regime&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zora,%20A&rft.date=2007-10-10&rft.volume=19&rft.issue=40&rft.spage=406201&rft.epage=406201%20(9)&rft.pages=406201-406201%20(9)&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/19/40/406201&rft_dat=%3Cproquest_pasca%3E902339165%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30985799&rft_id=info:pmid/22049100&rfr_iscdi=true