Polygonal Approximation of Point Sets
Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/vo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | |
container_start_page | 159 |
container_title | |
container_volume | |
creator | Latecki, Longin Jan Lakaemper, Rolf Sobel, Marc |
description | Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters. |
doi_str_mv | 10.1007/11774938_13 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-5dfb3118d2ab05f7f172bc0e16ebf3de6cc90fef9ce068f7b377f21b8409e8a33</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhccXWGtX_oFsunARvTc381qWUh9QsKCCu2EmnSnRmAmZLOy_N1IFz-YszsfhcBi7QrhBAHmLKGWpSRmkI3ZBvATiyMu3YzZBgZgTlfqEzbRUfxnxUzYBgiLXsqRzNkvpHUYRCqH4hM03sdnvYmubbNF1ffyqP-1QxzaLIdvEuh2yZz-kS3YWbJP87Nen7PVu9bJ8yNdP94_LxTrvCi6GnG-DI0S1LawDHmRAWbgKPArvAm29qCoNwQddeRAqSEdShgKdKkF7ZYmmbH7o7WyqbBN621Z1Ml0_rur3BjUSSihG7vrApTFqd743LsaPZBDMz0_m30_0DRSsVD4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Polygonal Approximation of Point Sets</title><source>Springer Books</source><creator>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc</creator><contributor>Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</contributor><creatorcontrib>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc ; Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</creatorcontrib><description>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540351535</identifier><identifier>ISBN: 3540351531</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035154X</identifier><identifier>EISBN: 9783540351542</identifier><identifier>DOI: 10.1007/11774938_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Combinatorial Image Analysis, 2006, p.159-173</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11774938_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11774938_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19131702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Polthier, Konrad</contributor><contributor>Flach, Boris</contributor><contributor>Reulke, Ralf</contributor><contributor>Eckardt, Ulrich</contributor><contributor>Knauer, Uwe</contributor><creatorcontrib>Latecki, Longin Jan</creatorcontrib><creatorcontrib>Lakaemper, Rolf</creatorcontrib><creatorcontrib>Sobel, Marc</creatorcontrib><title>Polygonal Approximation of Point Sets</title><title>Combinatorial Image Analysis</title><description>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540351535</isbn><isbn>3540351531</isbn><isbn>354035154X</isbn><isbn>9783540351542</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkEtLw0AUhccXWGtX_oFsunARvTc381qWUh9QsKCCu2EmnSnRmAmZLOy_N1IFz-YszsfhcBi7QrhBAHmLKGWpSRmkI3ZBvATiyMu3YzZBgZgTlfqEzbRUfxnxUzYBgiLXsqRzNkvpHUYRCqH4hM03sdnvYmubbNF1ffyqP-1QxzaLIdvEuh2yZz-kS3YWbJP87Nen7PVu9bJ8yNdP94_LxTrvCi6GnG-DI0S1LawDHmRAWbgKPArvAm29qCoNwQddeRAqSEdShgKdKkF7ZYmmbH7o7WyqbBN621Z1Ml0_rur3BjUSSihG7vrApTFqd743LsaPZBDMz0_m30_0DRSsVD4</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Latecki, Longin Jan</creator><creator>Lakaemper, Rolf</creator><creator>Sobel, Marc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Polygonal Approximation of Point Sets</title><author>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-5dfb3118d2ab05f7f172bc0e16ebf3de6cc90fef9ce068f7b377f21b8409e8a33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latecki, Longin Jan</creatorcontrib><creatorcontrib>Lakaemper, Rolf</creatorcontrib><creatorcontrib>Sobel, Marc</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latecki, Longin Jan</au><au>Lakaemper, Rolf</au><au>Sobel, Marc</au><au>Polthier, Konrad</au><au>Flach, Boris</au><au>Reulke, Ralf</au><au>Eckardt, Ulrich</au><au>Knauer, Uwe</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Polygonal Approximation of Point Sets</atitle><btitle>Combinatorial Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>159</spage><epage>173</epage><pages>159-173</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540351535</isbn><isbn>3540351531</isbn><eisbn>354035154X</eisbn><eisbn>9783540351542</eisbn><abstract>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11774938_13</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Combinatorial Image Analysis, 2006, p.159-173 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19131702 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Polygonal Approximation of Point Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Polygonal%20Approximation%20of%20Point%20Sets&rft.btitle=Combinatorial%20Image%20Analysis&rft.au=Latecki,%20Longin%20Jan&rft.date=2006&rft.spage=159&rft.epage=173&rft.pages=159-173&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540351535&rft.isbn_list=3540351531&rft_id=info:doi/10.1007/11774938_13&rft_dat=%3Cpascalfrancis_sprin%3E19131702%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035154X&rft.eisbn_list=9783540351542&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |