Polygonal Approximation of Point Sets

Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Latecki, Longin Jan, Lakaemper, Rolf, Sobel, Marc
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 159
container_title
container_volume
creator Latecki, Longin Jan
Lakaemper, Rolf
Sobel, Marc
description Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.
doi_str_mv 10.1007/11774938_13
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-5dfb3118d2ab05f7f172bc0e16ebf3de6cc90fef9ce068f7b377f21b8409e8a33</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhccXWGtX_oFsunARvTc381qWUh9QsKCCu2EmnSnRmAmZLOy_N1IFz-YszsfhcBi7QrhBAHmLKGWpSRmkI3ZBvATiyMu3YzZBgZgTlfqEzbRUfxnxUzYBgiLXsqRzNkvpHUYRCqH4hM03sdnvYmubbNF1ffyqP-1QxzaLIdvEuh2yZz-kS3YWbJP87Nen7PVu9bJ8yNdP94_LxTrvCi6GnG-DI0S1LawDHmRAWbgKPArvAm29qCoNwQddeRAqSEdShgKdKkF7ZYmmbH7o7WyqbBN621Z1Ml0_rur3BjUSSihG7vrApTFqd743LsaPZBDMz0_m30_0DRSsVD4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Polygonal Approximation of Point Sets</title><source>Springer Books</source><creator>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc</creator><contributor>Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</contributor><creatorcontrib>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc ; Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</creatorcontrib><description>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540351535</identifier><identifier>ISBN: 3540351531</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035154X</identifier><identifier>EISBN: 9783540351542</identifier><identifier>DOI: 10.1007/11774938_13</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Combinatorial Image Analysis, 2006, p.159-173</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11774938_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11774938_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19131702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Polthier, Konrad</contributor><contributor>Flach, Boris</contributor><contributor>Reulke, Ralf</contributor><contributor>Eckardt, Ulrich</contributor><contributor>Knauer, Uwe</contributor><creatorcontrib>Latecki, Longin Jan</creatorcontrib><creatorcontrib>Lakaemper, Rolf</creatorcontrib><creatorcontrib>Sobel, Marc</creatorcontrib><title>Polygonal Approximation of Point Sets</title><title>Combinatorial Image Analysis</title><description>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540351535</isbn><isbn>3540351531</isbn><isbn>354035154X</isbn><isbn>9783540351542</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkEtLw0AUhccXWGtX_oFsunARvTc381qWUh9QsKCCu2EmnSnRmAmZLOy_N1IFz-YszsfhcBi7QrhBAHmLKGWpSRmkI3ZBvATiyMu3YzZBgZgTlfqEzbRUfxnxUzYBgiLXsqRzNkvpHUYRCqH4hM03sdnvYmubbNF1ffyqP-1QxzaLIdvEuh2yZz-kS3YWbJP87Nen7PVu9bJ8yNdP94_LxTrvCi6GnG-DI0S1LawDHmRAWbgKPArvAm29qCoNwQddeRAqSEdShgKdKkF7ZYmmbH7o7WyqbBN621Z1Ml0_rur3BjUSSihG7vrApTFqd743LsaPZBDMz0_m30_0DRSsVD4</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Latecki, Longin Jan</creator><creator>Lakaemper, Rolf</creator><creator>Sobel, Marc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Polygonal Approximation of Point Sets</title><author>Latecki, Longin Jan ; Lakaemper, Rolf ; Sobel, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-5dfb3118d2ab05f7f172bc0e16ebf3de6cc90fef9ce068f7b377f21b8409e8a33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latecki, Longin Jan</creatorcontrib><creatorcontrib>Lakaemper, Rolf</creatorcontrib><creatorcontrib>Sobel, Marc</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latecki, Longin Jan</au><au>Lakaemper, Rolf</au><au>Sobel, Marc</au><au>Polthier, Konrad</au><au>Flach, Boris</au><au>Reulke, Ralf</au><au>Eckardt, Ulrich</au><au>Knauer, Uwe</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Polygonal Approximation of Point Sets</atitle><btitle>Combinatorial Image Analysis</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>159</spage><epage>173</epage><pages>159-173</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540351535</isbn><isbn>3540351531</isbn><eisbn>354035154X</eisbn><eisbn>9783540351542</eisbn><abstract>Our domain of interest is polygonal (and polyhedral) approximation of point sets. Neither the order of data points nor the number of needed line segments (surface patches) are known. In particular, point sets can be obtained by laser range scanner mounted on a moving robot or given as edge pixels/voxels in digital images. Polygonal approximation of edge pixels can also be interpreted as grouping of edge pixels to parts of object contours. The presented approach is described in the statistical framework of Expectation Maximization (EM) and in cognitively motivated geometric framework. We use local support estimation motivated by human visual perception to evaluate support in data points of EM components after each EM step. Consequently, we are able to recognize a locally optimal solution that is not globally optimal, and modify the number of model components and their parameters. We will show experimentally that the proposed approach has much stronger global convergence properties than the EM approach. In particular, the proposed approach is able to converge to a globally optimal solution independent of the initial number of model components and their initial parameters.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11774938_13</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Combinatorial Image Analysis, 2006, p.159-173
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19131702
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Polygonal Approximation of Point Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Polygonal%20Approximation%20of%20Point%20Sets&rft.btitle=Combinatorial%20Image%20Analysis&rft.au=Latecki,%20Longin%20Jan&rft.date=2006&rft.spage=159&rft.epage=173&rft.pages=159-173&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540351535&rft.isbn_list=3540351531&rft_id=info:doi/10.1007/11774938_13&rft_dat=%3Cpascalfrancis_sprin%3E19131702%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035154X&rft.eisbn_list=9783540351542&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true