Branch Voxels and Junctions in 3D Skeletons

Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Klette, Gisela
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 34
container_title
container_volume
creator Klette, Gisela
description Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.
doi_str_mv 10.1007/11774938_4
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131693</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-ab0d2b5dff18206892d0a161b40d75fefadb82692e020160efe249a6377652083</originalsourceid><addsrcrecordid>eNpFkEtLxEAQhMcXuK578RfkIggS7Z6e51HXNwsefOBtmGxmNG5MQmYF_fdmWcW6NEUVzUcxdoBwggD6FFFrYck4scH2SAogiVK8bLIRKsScSNgtNrHa_GUkt9kICHhutaBdNknpHQYRKmXkiB2f976Zv2XP7VeoU-abMrv7bObLqm1SVjUZXWQPi1CH5eD32U70dQqT3ztmT1eXj9ObfHZ_fTs9m-UdR7PMfQElL2QZIxoOylhegh_wCgGlljFEXxaGK8sDcEAFIQYurFektZIcDI3Z4fpv59Pc13FFWCXX9dWH778dWhzoLQ29o3UvDVHzGnpXtO0iOQS3Gsv9j0U_n2FT6w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Branch Voxels and Junctions in 3D Skeletons</title><source>Springer Books</source><creator>Klette, Gisela</creator><contributor>Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</contributor><creatorcontrib>Klette, Gisela ; Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</creatorcontrib><description>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540351535</identifier><identifier>ISBN: 3540351531</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035154X</identifier><identifier>EISBN: 9783540351542</identifier><identifier>DOI: 10.1007/11774938_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>3D curve analysis ; 3D skeletons ; Applied sciences ; Artificial intelligence ; astrocytes ; branch index ; branch nodes ; Computer science; control theory; systems ; Exact sciences and technology ; medical image analysis ; Pattern recognition. Digital image processing. Computational geometry ; thinning</subject><ispartof>Combinatorial Image Analysis, 2006, p.34-44</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11774938_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11774938_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19131693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Polthier, Konrad</contributor><contributor>Flach, Boris</contributor><contributor>Reulke, Ralf</contributor><contributor>Eckardt, Ulrich</contributor><contributor>Knauer, Uwe</contributor><creatorcontrib>Klette, Gisela</creatorcontrib><title>Branch Voxels and Junctions in 3D Skeletons</title><title>Combinatorial Image Analysis</title><description>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</description><subject>3D curve analysis</subject><subject>3D skeletons</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>astrocytes</subject><subject>branch index</subject><subject>branch nodes</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>medical image analysis</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>thinning</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540351535</isbn><isbn>3540351531</isbn><isbn>354035154X</isbn><isbn>9783540351542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtLxEAQhMcXuK578RfkIggS7Z6e51HXNwsefOBtmGxmNG5MQmYF_fdmWcW6NEUVzUcxdoBwggD6FFFrYck4scH2SAogiVK8bLIRKsScSNgtNrHa_GUkt9kICHhutaBdNknpHQYRKmXkiB2f976Zv2XP7VeoU-abMrv7bObLqm1SVjUZXWQPi1CH5eD32U70dQqT3ztmT1eXj9ObfHZ_fTs9m-UdR7PMfQElL2QZIxoOylhegh_wCgGlljFEXxaGK8sDcEAFIQYurFektZIcDI3Z4fpv59Pc13FFWCXX9dWH778dWhzoLQ29o3UvDVHzGnpXtO0iOQS3Gsv9j0U_n2FT6w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Klette, Gisela</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Branch Voxels and Junctions in 3D Skeletons</title><author>Klette, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-ab0d2b5dff18206892d0a161b40d75fefadb82692e020160efe249a6377652083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3D curve analysis</topic><topic>3D skeletons</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>astrocytes</topic><topic>branch index</topic><topic>branch nodes</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>medical image analysis</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>thinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klette, Gisela</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klette, Gisela</au><au>Polthier, Konrad</au><au>Flach, Boris</au><au>Reulke, Ralf</au><au>Eckardt, Ulrich</au><au>Knauer, Uwe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Branch Voxels and Junctions in 3D Skeletons</atitle><btitle>Combinatorial Image Analysis</btitle><date>2006</date><risdate>2006</risdate><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540351535</isbn><isbn>3540351531</isbn><eisbn>354035154X</eisbn><eisbn>9783540351542</eisbn><abstract>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11774938_4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Combinatorial Image Analysis, 2006, p.34-44
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19131693
source Springer Books
subjects 3D curve analysis
3D skeletons
Applied sciences
Artificial intelligence
astrocytes
branch index
branch nodes
Computer science
control theory
systems
Exact sciences and technology
medical image analysis
Pattern recognition. Digital image processing. Computational geometry
thinning
title Branch Voxels and Junctions in 3D Skeletons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Branch%20Voxels%20and%20Junctions%20in%203D%20Skeletons&rft.btitle=Combinatorial%20Image%20Analysis&rft.au=Klette,%20Gisela&rft.date=2006&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540351535&rft.isbn_list=3540351531&rft_id=info:doi/10.1007/11774938_4&rft_dat=%3Cpascalfrancis_sprin%3E19131693%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035154X&rft.eisbn_list=9783540351542&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true