Branch Voxels and Junctions in 3D Skeletons
Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | |
container_start_page | 34 |
container_title | |
container_volume | |
creator | Klette, Gisela |
description | Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue. |
doi_str_mv | 10.1007/11774938_4 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131693</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-ab0d2b5dff18206892d0a161b40d75fefadb82692e020160efe249a6377652083</originalsourceid><addsrcrecordid>eNpFkEtLxEAQhMcXuK578RfkIggS7Z6e51HXNwsefOBtmGxmNG5MQmYF_fdmWcW6NEUVzUcxdoBwggD6FFFrYck4scH2SAogiVK8bLIRKsScSNgtNrHa_GUkt9kICHhutaBdNknpHQYRKmXkiB2f976Zv2XP7VeoU-abMrv7bObLqm1SVjUZXWQPi1CH5eD32U70dQqT3ztmT1eXj9ObfHZ_fTs9m-UdR7PMfQElL2QZIxoOylhegh_wCgGlljFEXxaGK8sDcEAFIQYurFektZIcDI3Z4fpv59Pc13FFWCXX9dWH778dWhzoLQ29o3UvDVHzGnpXtO0iOQS3Gsv9j0U_n2FT6w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Branch Voxels and Junctions in 3D Skeletons</title><source>Springer Books</source><creator>Klette, Gisela</creator><contributor>Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</contributor><creatorcontrib>Klette, Gisela ; Polthier, Konrad ; Flach, Boris ; Reulke, Ralf ; Eckardt, Ulrich ; Knauer, Uwe</creatorcontrib><description>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540351535</identifier><identifier>ISBN: 3540351531</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354035154X</identifier><identifier>EISBN: 9783540351542</identifier><identifier>DOI: 10.1007/11774938_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>3D curve analysis ; 3D skeletons ; Applied sciences ; Artificial intelligence ; astrocytes ; branch index ; branch nodes ; Computer science; control theory; systems ; Exact sciences and technology ; medical image analysis ; Pattern recognition. Digital image processing. Computational geometry ; thinning</subject><ispartof>Combinatorial Image Analysis, 2006, p.34-44</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11774938_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11774938_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19131693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Polthier, Konrad</contributor><contributor>Flach, Boris</contributor><contributor>Reulke, Ralf</contributor><contributor>Eckardt, Ulrich</contributor><contributor>Knauer, Uwe</contributor><creatorcontrib>Klette, Gisela</creatorcontrib><title>Branch Voxels and Junctions in 3D Skeletons</title><title>Combinatorial Image Analysis</title><description>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</description><subject>3D curve analysis</subject><subject>3D skeletons</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>astrocytes</subject><subject>branch index</subject><subject>branch nodes</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>medical image analysis</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>thinning</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540351535</isbn><isbn>3540351531</isbn><isbn>354035154X</isbn><isbn>9783540351542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtLxEAQhMcXuK578RfkIggS7Z6e51HXNwsefOBtmGxmNG5MQmYF_fdmWcW6NEUVzUcxdoBwggD6FFFrYck4scH2SAogiVK8bLIRKsScSNgtNrHa_GUkt9kICHhutaBdNknpHQYRKmXkiB2f976Zv2XP7VeoU-abMrv7bObLqm1SVjUZXWQPi1CH5eD32U70dQqT3ztmT1eXj9ObfHZ_fTs9m-UdR7PMfQElL2QZIxoOylhegh_wCgGlljFEXxaGK8sDcEAFIQYurFektZIcDI3Z4fpv59Pc13FFWCXX9dWH778dWhzoLQ29o3UvDVHzGnpXtO0iOQS3Gsv9j0U_n2FT6w</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Klette, Gisela</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Branch Voxels and Junctions in 3D Skeletons</title><author>Klette, Gisela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-ab0d2b5dff18206892d0a161b40d75fefadb82692e020160efe249a6377652083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3D curve analysis</topic><topic>3D skeletons</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>astrocytes</topic><topic>branch index</topic><topic>branch nodes</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>medical image analysis</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>thinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klette, Gisela</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klette, Gisela</au><au>Polthier, Konrad</au><au>Flach, Boris</au><au>Reulke, Ralf</au><au>Eckardt, Ulrich</au><au>Knauer, Uwe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Branch Voxels and Junctions in 3D Skeletons</atitle><btitle>Combinatorial Image Analysis</btitle><date>2006</date><risdate>2006</risdate><spage>34</spage><epage>44</epage><pages>34-44</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540351535</isbn><isbn>3540351531</isbn><eisbn>354035154X</eisbn><eisbn>9783540351542</eisbn><abstract>Branch indices of points on curves (introduced by Urysohn and Menger) are of basic importance in the mathematical theory of curves, defined in Euclidean space. This paper applies the concept of branch points in the 3D orthogonal grid, motivated by the need to analyze curve-like structures in digital images. These curve-like structures have been derived as 3D skeletons (by means of thinning). This paper discusses approaches of defining branch indices for voxels on 3D skeletons, where the notion of a junction will play a crucial role. We illustrate the potentials of using junctions in 3D image analysis based on a recent project of analyzing the distribution of astrocytes in human brain tissue.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11774938_4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Combinatorial Image Analysis, 2006, p.34-44 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19131693 |
source | Springer Books |
subjects | 3D curve analysis 3D skeletons Applied sciences Artificial intelligence astrocytes branch index branch nodes Computer science control theory systems Exact sciences and technology medical image analysis Pattern recognition. Digital image processing. Computational geometry thinning |
title | Branch Voxels and Junctions in 3D Skeletons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Branch%20Voxels%20and%20Junctions%20in%203D%20Skeletons&rft.btitle=Combinatorial%20Image%20Analysis&rft.au=Klette,%20Gisela&rft.date=2006&rft.spage=34&rft.epage=44&rft.pages=34-44&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540351535&rft.isbn_list=3540351531&rft_id=info:doi/10.1007/11774938_4&rft_dat=%3Cpascalfrancis_sprin%3E19131693%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=354035154X&rft.eisbn_list=9783540351542&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |