Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis
Many approaches for Satisfiability Modulo Theory (SMT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal({T})})$\...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 541 |
---|---|
container_issue | |
container_start_page | 527 |
container_title | |
container_volume | |
creator | Bruttomesso, Roberto Cimatti, Alessandro Franzén, Anders Griggio, Alberto Sebastiani, Roberto |
description | Many approaches for Satisfiability Modulo Theory (SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T})})$\end{document} rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}} ({\mathcal{T}}-solver$\end{document}). When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document} is the combination \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${{\mathcal{T}}_1\cup{\mathcal{T}}_2}$\end{document} of two simpler theories, the approach is typically handled by means of Nelson-Oppen’s (NO) theory combination schema in which two specific \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document}-solver deduce and exchange (disjunctions of) interface equalities.
In recent papers we have proposed a new approach to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, called Delayed Theory Combination (Dtc). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated.
In this paper we show that this estimate was too pessimistic. We present a comparative a |
doi_str_mv | 10.1007/11916277_36 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131403</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1716-5786dd98156c2ed8c46bce1652c8aee13f16b303c2d650b71164d3b4be18edf83</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LopRO_AEvDAwpvrZjO2xVeUqFDpQ5smMHDGkc2aVS_j2pChJ3ucP5zhk-hC6ATIEQeQ1QgKBSlkwcoDOWc8IVVZQeohEIgIwxXhyhSSHVXwbFMRoRRmhWSM5O0SSlTzIcAyWKfITqW9fo3lm8-nAh9nge1sa3euNDi7dpil9ck0KbLbvOtbgOEb8OWaq9Nr7xmx4_B_vdhH3bu3SDZ7uJTscB2zo8a3XTJ5_O0Umtm-Qmv3-M3u7vVvPHbLF8eJrPFlkHEkSWSyWsLRTkoqLOqooLUzkQOa2Udg5YDcIwwipqRU6MBBDcMsONA-VsrdgYXe53O50q3dRRt5VPZRf9Wse-HPQx4IQN3NWeS0PUvrtYmhC-Ugmk3Iku_4lmP5cnavU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis</title><source>Springer Books</source><creator>Bruttomesso, Roberto ; Cimatti, Alessandro ; Franzén, Anders ; Griggio, Alberto ; Sebastiani, Roberto</creator><contributor>Voronkov, Andrei ; Hermann, Miki</contributor><creatorcontrib>Bruttomesso, Roberto ; Cimatti, Alessandro ; Franzén, Anders ; Griggio, Alberto ; Sebastiani, Roberto ; Voronkov, Andrei ; Hermann, Miki</creatorcontrib><description>Many approaches for Satisfiability Modulo Theory (SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T})})$\end{document} rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}} ({\mathcal{T}}-solver$\end{document}). When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document} is the combination \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${{\mathcal{T}}_1\cup{\mathcal{T}}_2}$\end{document} of two simpler theories, the approach is typically handled by means of Nelson-Oppen’s (NO) theory combination schema in which two specific \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document}-solver deduce and exchange (disjunctions of) interface equalities.
In recent papers we have proposed a new approach to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, called Delayed Theory Combination (Dtc). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated.
In this paper we show that this estimate was too pessimistic. We present a comparative analysis of Dtc vs. NO for SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, which shows that, using state-of-the-art SAT-solving techniques, the amount of boolean branches performed by Dtc can be upper bounded by the number of deductions and boolean branches performed by NO on the same problem. We prove the result for different deduction capabilities of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T}-solver)}$\end{document} and for both convex and non-convex theories.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540482819</identifier><identifier>ISBN: 3540482814</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482822</identifier><identifier>EISBN: 9783540482826</identifier><identifier>DOI: 10.1007/11916277_36</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Decision Procedure ; Exact sciences and technology ; Input Formula ; Interface Equality ; Satisfiability Modulo Theory ; Truth Assignment</subject><ispartof>Lecture notes in computer science, 2006, p.527-541</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11916277_36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11916277_36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19131403$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Voronkov, Andrei</contributor><contributor>Hermann, Miki</contributor><creatorcontrib>Bruttomesso, Roberto</creatorcontrib><creatorcontrib>Cimatti, Alessandro</creatorcontrib><creatorcontrib>Franzén, Anders</creatorcontrib><creatorcontrib>Griggio, Alberto</creatorcontrib><creatorcontrib>Sebastiani, Roberto</creatorcontrib><title>Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis</title><title>Lecture notes in computer science</title><description>Many approaches for Satisfiability Modulo Theory (SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T})})$\end{document} rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}} ({\mathcal{T}}-solver$\end{document}). When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document} is the combination \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${{\mathcal{T}}_1\cup{\mathcal{T}}_2}$\end{document} of two simpler theories, the approach is typically handled by means of Nelson-Oppen’s (NO) theory combination schema in which two specific \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document}-solver deduce and exchange (disjunctions of) interface equalities.
In recent papers we have proposed a new approach to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, called Delayed Theory Combination (Dtc). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated.
In this paper we show that this estimate was too pessimistic. We present a comparative analysis of Dtc vs. NO for SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, which shows that, using state-of-the-art SAT-solving techniques, the amount of boolean branches performed by Dtc can be upper bounded by the number of deductions and boolean branches performed by NO on the same problem. We prove the result for different deduction capabilities of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T}-solver)}$\end{document} and for both convex and non-convex theories.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Decision Procedure</subject><subject>Exact sciences and technology</subject><subject>Input Formula</subject><subject>Interface Equality</subject><subject>Satisfiability Modulo Theory</subject><subject>Truth Assignment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540482819</isbn><isbn>3540482814</isbn><isbn>3540482822</isbn><isbn>9783540482826</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkDtPwzAUhc1LopRO_AEvDAwpvrZjO2xVeUqFDpQ5smMHDGkc2aVS_j2pChJ3ucP5zhk-hC6ATIEQeQ1QgKBSlkwcoDOWc8IVVZQeohEIgIwxXhyhSSHVXwbFMRoRRmhWSM5O0SSlTzIcAyWKfITqW9fo3lm8-nAh9nge1sa3euNDi7dpil9ck0KbLbvOtbgOEb8OWaq9Nr7xmx4_B_vdhH3bu3SDZ7uJTscB2zo8a3XTJ5_O0Umtm-Qmv3-M3u7vVvPHbLF8eJrPFlkHEkSWSyWsLRTkoqLOqooLUzkQOa2Udg5YDcIwwipqRU6MBBDcMsONA-VsrdgYXe53O50q3dRRt5VPZRf9Wse-HPQx4IQN3NWeS0PUvrtYmhC-Ugmk3Iku_4lmP5cnavU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Bruttomesso, Roberto</creator><creator>Cimatti, Alessandro</creator><creator>Franzén, Anders</creator><creator>Griggio, Alberto</creator><creator>Sebastiani, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis</title><author>Bruttomesso, Roberto ; Cimatti, Alessandro ; Franzén, Anders ; Griggio, Alberto ; Sebastiani, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1716-5786dd98156c2ed8c46bce1652c8aee13f16b303c2d650b71164d3b4be18edf83</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Decision Procedure</topic><topic>Exact sciences and technology</topic><topic>Input Formula</topic><topic>Interface Equality</topic><topic>Satisfiability Modulo Theory</topic><topic>Truth Assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruttomesso, Roberto</creatorcontrib><creatorcontrib>Cimatti, Alessandro</creatorcontrib><creatorcontrib>Franzén, Anders</creatorcontrib><creatorcontrib>Griggio, Alberto</creatorcontrib><creatorcontrib>Sebastiani, Roberto</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruttomesso, Roberto</au><au>Cimatti, Alessandro</au><au>Franzén, Anders</au><au>Griggio, Alberto</au><au>Sebastiani, Roberto</au><au>Voronkov, Andrei</au><au>Hermann, Miki</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>527</spage><epage>541</epage><pages>527-541</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540482819</isbn><isbn>3540482814</isbn><eisbn>3540482822</eisbn><eisbn>9783540482826</eisbn><abstract>Many approaches for Satisfiability Modulo Theory (SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T})})$\end{document} rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}} ({\mathcal{T}}-solver$\end{document}). When \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document} is the combination \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${{\mathcal{T}}_1\cup{\mathcal{T}}_2}$\end{document} of two simpler theories, the approach is typically handled by means of Nelson-Oppen’s (NO) theory combination schema in which two specific \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal{T}}$\end{document}-solver deduce and exchange (disjunctions of) interface equalities.
In recent papers we have proposed a new approach to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, called Delayed Theory Combination (Dtc). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated.
In this paper we show that this estimate was too pessimistic. We present a comparative analysis of Dtc vs. NO for SMT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$({{\mathcal{T}}_1\cup{\mathcal{T}}_2})$\end{document}, which shows that, using state-of-the-art SAT-solving techniques, the amount of boolean branches performed by Dtc can be upper bounded by the number of deductions and boolean branches performed by NO on the same problem. We prove the result for different deduction capabilities of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathcal({T}-solver)}$\end{document} and for both convex and non-convex theories.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11916277_36</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.527-541 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19131403 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Decision Procedure Exact sciences and technology Input Formula Interface Equality Satisfiability Modulo Theory Truth Assignment |
title | Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Delayed%20Theory%20Combination%20vs.%20Nelson-Oppen%20for%20Satisfiability%20Modulo%20Theories:%20A%20Comparative%20Analysis&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bruttomesso,%20Roberto&rft.date=2006&rft.spage=527&rft.epage=541&rft.pages=527-541&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540482819&rft.isbn_list=3540482814&rft_id=info:doi/10.1007/11916277_36&rft_dat=%3Cpascalfrancis_sprin%3E19131403%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482822&rft.eisbn_list=9783540482826&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |