Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm
The efficient design of multiplierless implementations of constant matrix multipliers is challenged by the huge solution search spaces even for small scale problems. Previous approaches tend to use hill-climbing algorithms risking sub-optimal results. The three-stage algorithm proposed in this paper...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | |
container_start_page | 296 |
container_title | |
container_volume | |
creator | Kinane, Andrew Muresan, Valentin O’Connor, Noel |
description | The efficient design of multiplierless implementations of constant matrix multipliers is challenged by the huge solution search spaces even for small scale problems. Previous approaches tend to use hill-climbing algorithms risking sub-optimal results. The three-stage algorithm proposed in this paper partitions the global constant matrix multiplier into its constituent dot products, and all possible solutions are derived for each dot product in the first two stages. The third stage leverages the effective search capability of genetic programming to search for global solutions created by combining dot product partial solutions. A bonus feature of the algorithm is that the modelling is amenable to hardware acceleration. Another bonus feature is a search space reduction early exit mechanism, made possible by the way the algorithm is modelled. Results show an improvement on state of the art algorithms with future potential for even greater savings. |
doi_str_mv | 10.1007/11732242_27 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19131265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19131265</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-ce6db72a988a1d82405fe706e1ed5f5caf245890530bb1342c229737cef2e0733</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRFs68Qe8MDAE7PfsOB5RBS1Sqy50YogcxymGNIlsI-DfU1SQmO6V7tEdDiGXnN1wxtQt5woBBJSgjsgYpWCIgAUekxHPOc8QhT4hU62Kv02JUzJiyCDTSuA5Gcf4yhgDpWFEntdD8jsfTfJ9R_uGzvouJtMlujIp-E-6em-TH1pvD8R6cOHQFibUHyY4uom-21JD565zyVt612774NPL7oKcNaaNbvqbE7J5uH-aLbLlev44u1tmA8g8ZdbldaXA6KIwvC5AMNk4xXLHXS0baU0DQhaaSWRVxVGABdAKlXUNOKYQJ-Tq8DuYaE3bBNNZH8sh-J0JXyXXHDnkcs9dH7i4n7qtC2XV92-x5Kz8UVv-U4vfGZ1mqA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm</title><source>Springer Books</source><creator>Kinane, Andrew ; Muresan, Valentin ; O’Connor, Noel</creator><contributor>Takagi, Hideyuki ; Drechsler, Rolf ; Romero, Juan ; Branke, Jürgen ; Squillero, Giovanni ; Moore, Jason H. ; Cotta, Carlos ; Machado, Penousal ; Smith, George D. ; Costa, Ernesto ; Lutton, Evelyne ; Rothlauf, Franz ; Cagnoni, Stefano</contributor><creatorcontrib>Kinane, Andrew ; Muresan, Valentin ; O’Connor, Noel ; Takagi, Hideyuki ; Drechsler, Rolf ; Romero, Juan ; Branke, Jürgen ; Squillero, Giovanni ; Moore, Jason H. ; Cotta, Carlos ; Machado, Penousal ; Smith, George D. ; Costa, Ernesto ; Lutton, Evelyne ; Rothlauf, Franz ; Cagnoni, Stefano</creatorcontrib><description>The efficient design of multiplierless implementations of constant matrix multipliers is challenged by the huge solution search spaces even for small scale problems. Previous approaches tend to use hill-climbing algorithms risking sub-optimal results. The three-stage algorithm proposed in this paper partitions the global constant matrix multiplier into its constituent dot products, and all possible solutions are derived for each dot product in the first two stages. The third stage leverages the effective search capability of genetic programming to search for global solutions created by combining dot product partial solutions. A bonus feature of the algorithm is that the modelling is amenable to hardware acceleration. Another bonus feature is a search space reduction early exit mechanism, made possible by the way the algorithm is modelled. Results show an improvement on state of the art algorithms with future potential for even greater savings.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540332374</identifier><identifier>ISBN: 3540332375</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540332383</identifier><identifier>EISBN: 9783540332381</identifier><identifier>DOI: 10.1007/11732242_27</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Discrete Cosine Transform ; Exact sciences and technology ; Full Adder ; Hardware Acceleration ; Product Node ; Search Space Reduction ; Theoretical computing</subject><ispartof>Applications of Evolutionary Computing, 2006, p.296-307</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11732242_27$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11732242_27$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4040,4041,27916,38246,41433,42502</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19131265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Takagi, Hideyuki</contributor><contributor>Drechsler, Rolf</contributor><contributor>Romero, Juan</contributor><contributor>Branke, Jürgen</contributor><contributor>Squillero, Giovanni</contributor><contributor>Moore, Jason H.</contributor><contributor>Cotta, Carlos</contributor><contributor>Machado, Penousal</contributor><contributor>Smith, George D.</contributor><contributor>Costa, Ernesto</contributor><contributor>Lutton, Evelyne</contributor><contributor>Rothlauf, Franz</contributor><contributor>Cagnoni, Stefano</contributor><creatorcontrib>Kinane, Andrew</creatorcontrib><creatorcontrib>Muresan, Valentin</creatorcontrib><creatorcontrib>O’Connor, Noel</creatorcontrib><title>Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm</title><title>Applications of Evolutionary Computing</title><description>The efficient design of multiplierless implementations of constant matrix multipliers is challenged by the huge solution search spaces even for small scale problems. Previous approaches tend to use hill-climbing algorithms risking sub-optimal results. The three-stage algorithm proposed in this paper partitions the global constant matrix multiplier into its constituent dot products, and all possible solutions are derived for each dot product in the first two stages. The third stage leverages the effective search capability of genetic programming to search for global solutions created by combining dot product partial solutions. A bonus feature of the algorithm is that the modelling is amenable to hardware acceleration. Another bonus feature is a search space reduction early exit mechanism, made possible by the way the algorithm is modelled. Results show an improvement on state of the art algorithms with future potential for even greater savings.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Discrete Cosine Transform</subject><subject>Exact sciences and technology</subject><subject>Full Adder</subject><subject>Hardware Acceleration</subject><subject>Product Node</subject><subject>Search Space Reduction</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540332374</isbn><isbn>3540332375</isbn><isbn>3540332383</isbn><isbn>9783540332381</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD1PwzAURc2XRFs68Qe8MDAE7PfsOB5RBS1Sqy50YogcxymGNIlsI-DfU1SQmO6V7tEdDiGXnN1wxtQt5woBBJSgjsgYpWCIgAUekxHPOc8QhT4hU62Kv02JUzJiyCDTSuA5Gcf4yhgDpWFEntdD8jsfTfJ9R_uGzvouJtMlujIp-E-6em-TH1pvD8R6cOHQFibUHyY4uom-21JD565zyVt612774NPL7oKcNaaNbvqbE7J5uH-aLbLlev44u1tmA8g8ZdbldaXA6KIwvC5AMNk4xXLHXS0baU0DQhaaSWRVxVGABdAKlXUNOKYQJ-Tq8DuYaE3bBNNZH8sh-J0JXyXXHDnkcs9dH7i4n7qtC2XV92-x5Kz8UVv-U4vfGZ1mqA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kinane, Andrew</creator><creator>Muresan, Valentin</creator><creator>O’Connor, Noel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm</title><author>Kinane, Andrew ; Muresan, Valentin ; O’Connor, Noel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-ce6db72a988a1d82405fe706e1ed5f5caf245890530bb1342c229737cef2e0733</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Discrete Cosine Transform</topic><topic>Exact sciences and technology</topic><topic>Full Adder</topic><topic>Hardware Acceleration</topic><topic>Product Node</topic><topic>Search Space Reduction</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinane, Andrew</creatorcontrib><creatorcontrib>Muresan, Valentin</creatorcontrib><creatorcontrib>O’Connor, Noel</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinane, Andrew</au><au>Muresan, Valentin</au><au>O’Connor, Noel</au><au>Takagi, Hideyuki</au><au>Drechsler, Rolf</au><au>Romero, Juan</au><au>Branke, Jürgen</au><au>Squillero, Giovanni</au><au>Moore, Jason H.</au><au>Cotta, Carlos</au><au>Machado, Penousal</au><au>Smith, George D.</au><au>Costa, Ernesto</au><au>Lutton, Evelyne</au><au>Rothlauf, Franz</au><au>Cagnoni, Stefano</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm</atitle><btitle>Applications of Evolutionary Computing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006</date><risdate>2006</risdate><spage>296</spage><epage>307</epage><pages>296-307</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540332374</isbn><isbn>3540332375</isbn><eisbn>3540332383</eisbn><eisbn>9783540332381</eisbn><abstract>The efficient design of multiplierless implementations of constant matrix multipliers is challenged by the huge solution search spaces even for small scale problems. Previous approaches tend to use hill-climbing algorithms risking sub-optimal results. The three-stage algorithm proposed in this paper partitions the global constant matrix multiplier into its constituent dot products, and all possible solutions are derived for each dot product in the first two stages. The third stage leverages the effective search capability of genetic programming to search for global solutions created by combining dot product partial solutions. A bonus feature of the algorithm is that the modelling is amenable to hardware acceleration. Another bonus feature is a search space reduction early exit mechanism, made possible by the way the algorithm is modelled. Results show an improvement on state of the art algorithms with future potential for even greater savings.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11732242_27</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Applications of Evolutionary Computing, 2006, p.296-307 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19131265 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science control theory systems Discrete Cosine Transform Exact sciences and technology Full Adder Hardware Acceleration Product Node Search Space Reduction Theoretical computing |
title | Optimisation of Constant Matrix Multiplication Operation Hardware Using a Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimisation%20of%20Constant%20Matrix%20Multiplication%20Operation%20Hardware%20Using%20a%20Genetic%20Algorithm&rft.btitle=Applications%20of%20Evolutionary%20Computing&rft.au=Kinane,%20Andrew&rft.date=2006&rft.spage=296&rft.epage=307&rft.pages=296-307&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540332374&rft.isbn_list=3540332375&rft_id=info:doi/10.1007/11732242_27&rft_dat=%3Cpascalfrancis_sprin%3E19131265%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540332383&rft.eisbn_list=9783540332381&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |