Coinductive Logic Programming

We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Simon, Luke, Mallya, Ajay, Bansal, Ajay, Gupta, Gopal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue
container_start_page 330
container_title
container_volume
creator Simon, Luke
Mallya, Ajay
Bansal, Ajay
Gupta, Gopal
description We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.
doi_str_mv 10.1007/11799573_25
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19104711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19104711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6a3ff784d0bab816c5540602cba2500ef936e3a1c3e1820e142cb2dba13ecf593</originalsourceid><addsrcrecordid>eNpVkDtLxEAUhccXGNetrIVtLCyi986dR6aU4AsCWmg9TCaTMLpJlswq-O-NrIVWp_gO58DH2BnCFQLoa0RtjNRkudxjS6MLkgJIKVJ8n2WoEHMiYQ7-MSkPWQYEPDda0DE7SekNALg2PGPn5RiH5sNv42dYVWMX_ep5GrvJ9X0culN21Lp1CsvfXLDXu9uX8iGvnu4fy5sq33A021w5altdiAZqVxeovJyvFXBfOy4BQmtIBXLoKWDBIaCYEW9qhxR8Kw0t2MVud-OSd-t2coOPyW6m2Lvpy6JBEBpx7l3uemlGQxcmW4_je7II9seP_eOHvgGTxFCJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coinductive Logic Programming</title><source>Springer Books</source><creator>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal</creator><contributor>Etalle, Sandro ; Truszczyński, Mirosław</contributor><creatorcontrib>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal ; Etalle, Sandro ; Truszczyński, Mirosław</creatorcontrib><description>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540366355</identifier><identifier>ISBN: 3540366350</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540366362</identifier><identifier>EISBN: 3540366369</identifier><identifier>DOI: 10.1007/11799573_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Logic Program ; Logic Programming ; Logical, boolean and switching functions ; Model Check ; Operational Semantic ; Rational Term ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.330-345</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11799573_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11799573_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19104711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Etalle, Sandro</contributor><contributor>Truszczyński, Mirosław</contributor><creatorcontrib>Simon, Luke</creatorcontrib><creatorcontrib>Mallya, Ajay</creatorcontrib><creatorcontrib>Bansal, Ajay</creatorcontrib><creatorcontrib>Gupta, Gopal</creatorcontrib><title>Coinductive Logic Programming</title><title>Lecture notes in computer science</title><description>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logic Program</subject><subject>Logic Programming</subject><subject>Logical, boolean and switching functions</subject><subject>Model Check</subject><subject>Operational Semantic</subject><subject>Rational Term</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540366355</isbn><isbn>3540366350</isbn><isbn>9783540366362</isbn><isbn>3540366369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkDtLxEAUhccXGNetrIVtLCyi986dR6aU4AsCWmg9TCaTMLpJlswq-O-NrIVWp_gO58DH2BnCFQLoa0RtjNRkudxjS6MLkgJIKVJ8n2WoEHMiYQ7-MSkPWQYEPDda0DE7SekNALg2PGPn5RiH5sNv42dYVWMX_ep5GrvJ9X0culN21Lp1CsvfXLDXu9uX8iGvnu4fy5sq33A021w5altdiAZqVxeovJyvFXBfOy4BQmtIBXLoKWDBIaCYEW9qhxR8Kw0t2MVud-OSd-t2coOPyW6m2Lvpy6JBEBpx7l3uemlGQxcmW4_je7II9seP_eOHvgGTxFCJ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Simon, Luke</creator><creator>Mallya, Ajay</creator><creator>Bansal, Ajay</creator><creator>Gupta, Gopal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Coinductive Logic Programming</title><author>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6a3ff784d0bab816c5540602cba2500ef936e3a1c3e1820e142cb2dba13ecf593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logic Program</topic><topic>Logic Programming</topic><topic>Logical, boolean and switching functions</topic><topic>Model Check</topic><topic>Operational Semantic</topic><topic>Rational Term</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Luke</creatorcontrib><creatorcontrib>Mallya, Ajay</creatorcontrib><creatorcontrib>Bansal, Ajay</creatorcontrib><creatorcontrib>Gupta, Gopal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Luke</au><au>Mallya, Ajay</au><au>Bansal, Ajay</au><au>Gupta, Gopal</au><au>Etalle, Sandro</au><au>Truszczyński, Mirosław</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coinductive Logic Programming</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>330</spage><epage>345</epage><pages>330-345</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540366355</isbn><isbn>3540366350</isbn><eisbn>9783540366362</eisbn><eisbn>3540366369</eisbn><abstract>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11799573_25</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2006, p.330-345
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19104711
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Logic Program
Logic Programming
Logical, boolean and switching functions
Model Check
Operational Semantic
Rational Term
Theoretical computing
title Coinductive Logic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coinductive%20Logic%20Programming&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Simon,%20Luke&rft.date=2006&rft.spage=330&rft.epage=345&rft.pages=330-345&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540366355&rft.isbn_list=3540366350&rft_id=info:doi/10.1007/11799573_25&rft_dat=%3Cpascalfrancis_sprin%3E19104711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540366362&rft.eisbn_list=3540366369&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true