Coinductive Logic Programming
We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic pr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 330 |
container_title | |
container_volume | |
creator | Simon, Luke Mallya, Ajay Bansal, Ajay Gupta, Gopal |
description | We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming. |
doi_str_mv | 10.1007/11799573_25 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19104711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19104711</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6a3ff784d0bab816c5540602cba2500ef936e3a1c3e1820e142cb2dba13ecf593</originalsourceid><addsrcrecordid>eNpVkDtLxEAUhccXGNetrIVtLCyi986dR6aU4AsCWmg9TCaTMLpJlswq-O-NrIVWp_gO58DH2BnCFQLoa0RtjNRkudxjS6MLkgJIKVJ8n2WoEHMiYQ7-MSkPWQYEPDda0DE7SekNALg2PGPn5RiH5sNv42dYVWMX_ep5GrvJ9X0culN21Lp1CsvfXLDXu9uX8iGvnu4fy5sq33A021w5altdiAZqVxeovJyvFXBfOy4BQmtIBXLoKWDBIaCYEW9qhxR8Kw0t2MVud-OSd-t2coOPyW6m2Lvpy6JBEBpx7l3uemlGQxcmW4_je7II9seP_eOHvgGTxFCJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coinductive Logic Programming</title><source>Springer Books</source><creator>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal</creator><contributor>Etalle, Sandro ; Truszczyński, Mirosław</contributor><creatorcontrib>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal ; Etalle, Sandro ; Truszczyński, Mirosław</creatorcontrib><description>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540366355</identifier><identifier>ISBN: 3540366350</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540366362</identifier><identifier>EISBN: 3540366369</identifier><identifier>DOI: 10.1007/11799573_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Logic Program ; Logic Programming ; Logical, boolean and switching functions ; Model Check ; Operational Semantic ; Rational Term ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2006, p.330-345</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11799573_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11799573_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19104711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Etalle, Sandro</contributor><contributor>Truszczyński, Mirosław</contributor><creatorcontrib>Simon, Luke</creatorcontrib><creatorcontrib>Mallya, Ajay</creatorcontrib><creatorcontrib>Bansal, Ajay</creatorcontrib><creatorcontrib>Gupta, Gopal</creatorcontrib><title>Coinductive Logic Programming</title><title>Lecture notes in computer science</title><description>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Logic Program</subject><subject>Logic Programming</subject><subject>Logical, boolean and switching functions</subject><subject>Model Check</subject><subject>Operational Semantic</subject><subject>Rational Term</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540366355</isbn><isbn>3540366350</isbn><isbn>9783540366362</isbn><isbn>3540366369</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVkDtLxEAUhccXGNetrIVtLCyi986dR6aU4AsCWmg9TCaTMLpJlswq-O-NrIVWp_gO58DH2BnCFQLoa0RtjNRkudxjS6MLkgJIKVJ8n2WoEHMiYQ7-MSkPWQYEPDda0DE7SekNALg2PGPn5RiH5sNv42dYVWMX_ep5GrvJ9X0culN21Lp1CsvfXLDXu9uX8iGvnu4fy5sq33A021w5altdiAZqVxeovJyvFXBfOy4BQmtIBXLoKWDBIaCYEW9qhxR8Kw0t2MVud-OSd-t2coOPyW6m2Lvpy6JBEBpx7l3uemlGQxcmW4_je7II9seP_eOHvgGTxFCJ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Simon, Luke</creator><creator>Mallya, Ajay</creator><creator>Bansal, Ajay</creator><creator>Gupta, Gopal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Coinductive Logic Programming</title><author>Simon, Luke ; Mallya, Ajay ; Bansal, Ajay ; Gupta, Gopal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6a3ff784d0bab816c5540602cba2500ef936e3a1c3e1820e142cb2dba13ecf593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Logic Program</topic><topic>Logic Programming</topic><topic>Logical, boolean and switching functions</topic><topic>Model Check</topic><topic>Operational Semantic</topic><topic>Rational Term</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Luke</creatorcontrib><creatorcontrib>Mallya, Ajay</creatorcontrib><creatorcontrib>Bansal, Ajay</creatorcontrib><creatorcontrib>Gupta, Gopal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Luke</au><au>Mallya, Ajay</au><au>Bansal, Ajay</au><au>Gupta, Gopal</au><au>Etalle, Sandro</au><au>Truszczyński, Mirosław</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coinductive Logic Programming</atitle><btitle>Lecture notes in computer science</btitle><date>2006</date><risdate>2006</risdate><spage>330</spage><epage>345</epage><pages>330-345</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540366355</isbn><isbn>3540366350</isbn><eisbn>9783540366362</eisbn><eisbn>3540366369</eisbn><abstract>We extend logic programming’s semantics with the semantic dual of traditional Herbrand semantics by using greatest fixed-points in place of least fixed-points. Executing a logic program then involves using coinduction to check inclusion in the greatest fixed-point. The resulting coinductive logic programming language is syntactically identical to, yet semantically subsumes logic programming with rational terms and lazy evaluation. We present a novel formal operational semantics that is based on synthesizing a coinductive hypothesis for this coinductive logic programming language. We prove that this new operational semantics is equivalent to the declarative semantics. Our operational semantics lends itself to an elegant and efficient goal directed proof search in the presence of rational terms and proofs. We describe a prototype implementation of this operational semantics along with applications of coinductive logic programming.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11799573_25</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2006, p.330-345 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_19104711 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Logic Program Logic Programming Logical, boolean and switching functions Model Check Operational Semantic Rational Term Theoretical computing |
title | Coinductive Logic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coinductive%20Logic%20Programming&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Simon,%20Luke&rft.date=2006&rft.spage=330&rft.epage=345&rft.pages=330-345&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540366355&rft.isbn_list=3540366350&rft_id=info:doi/10.1007/11799573_25&rft_dat=%3Cpascalfrancis_sprin%3E19104711%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540366362&rft.eisbn_list=3540366369&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |