Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations

We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 1999-03, Vol.11 (3), p.557-563
Hauptverfasser: Kim, Sa Heum, Kim, Sung Jin, Oh, Seung M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 3
container_start_page 557
container_title Chemistry of materials
container_volume 11
creator Kim, Sa Heum
Kim, Sung Jin
Oh, Seung M
description We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at >450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of >85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to >98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.
doi_str_mv 10.1021/cm9801643
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1909999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d23959074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-a34a33c1858ebd5e7aaca6ef42cc3e872fa8e03f01f79c066f1600479b20f7f73</originalsourceid><addsrcrecordid>eNo90MtOwzAQBVALgUQpLPgDL2AZGMeJnSxReFUtaiWCWFpT11ZSmofsgChfj6FQL8aLObqyLyHnDK4YxOxaN3kGTCT8gIxYGkOUAsSHZARZLqNEpuKYnHi_BmCBZyNSLZzp0eFQdy3tLJ3h1jizok_tPKYfNdKyMq7BDb01umv6ztf_chpIQrFd0cng6d3G6MF1ujJNrQMvqhCqB-Pqr99sf0qOLG68Ofu7x-Tl_q4sHqPZ_GFS3Mwi5EwMYSbIuWZZmpnlKjUSUaMwNom15iaTscXMALfArMw1CGGZAEhkvozBSiv5mFzscnv04SHWYatrr3pXN-i2iuWQhxNYtGO1H8znfo3uTQnJZarKxbMqOStehczUNPjLnUft1bp7d234hGKgflpX-9b5N856c8U</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><source>ACS Publications</source><creator>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</creator><creatorcontrib>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</creatorcontrib><description>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at &gt;450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of &gt;85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to &gt;98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm9801643</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology</subject><ispartof>Chemistry of materials, 1999-03, Vol.11 (3), p.557-563</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm9801643$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm9801643$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1909999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sa Heum</creatorcontrib><creatorcontrib>Kim, Sung Jin</creatorcontrib><creatorcontrib>Oh, Seung M</creatorcontrib><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at &gt;450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of &gt;85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to &gt;98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo90MtOwzAQBVALgUQpLPgDL2AZGMeJnSxReFUtaiWCWFpT11ZSmofsgChfj6FQL8aLObqyLyHnDK4YxOxaN3kGTCT8gIxYGkOUAsSHZARZLqNEpuKYnHi_BmCBZyNSLZzp0eFQdy3tLJ3h1jizok_tPKYfNdKyMq7BDb01umv6ztf_chpIQrFd0cng6d3G6MF1ujJNrQMvqhCqB-Pqr99sf0qOLG68Ofu7x-Tl_q4sHqPZ_GFS3Mwi5EwMYSbIuWZZmpnlKjUSUaMwNom15iaTscXMALfArMw1CGGZAEhkvozBSiv5mFzscnv04SHWYatrr3pXN-i2iuWQhxNYtGO1H8znfo3uTQnJZarKxbMqOStehczUNPjLnUft1bp7d234hGKgflpX-9b5N856c8U</recordid><startdate>19990315</startdate><enddate>19990315</enddate><creator>Kim, Sa Heum</creator><creator>Kim, Sung Jin</creator><creator>Oh, Seung M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>19990315</creationdate><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><author>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-a34a33c1858ebd5e7aaca6ef42cc3e872fa8e03f01f79c066f1600479b20f7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sa Heum</creatorcontrib><creatorcontrib>Kim, Sung Jin</creatorcontrib><creatorcontrib>Oh, Seung M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sa Heum</au><au>Kim, Sung Jin</au><au>Oh, Seung M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>1999-03-15</date><risdate>1999</risdate><volume>11</volume><issue>3</issue><spage>557</spage><epage>563</epage><pages>557-563</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at &gt;450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of &gt;85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to &gt;98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm9801643</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 1999-03, Vol.11 (3), p.557-563
issn 0897-4756
1520-5002
language eng
recordid cdi_pascalfrancis_primary_1909999
source ACS Publications
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
title Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Layered%20MnO2%20via%20Thermal%20Decomposition%20of%20KMnO4%20and%20Its%20Electrochemical%20Characterizations&rft.jtitle=Chemistry%20of%20materials&rft.au=Kim,%20Sa%20Heum&rft.date=1999-03-15&rft.volume=11&rft.issue=3&rft.spage=557&rft.epage=563&rft.pages=557-563&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm9801643&rft_dat=%3Cacs_pasca%3Ed23959074%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true