Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations
We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79%...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 1999-03, Vol.11 (3), p.557-563 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | 3 |
container_start_page | 557 |
container_title | Chemistry of materials |
container_volume | 11 |
creator | Kim, Sa Heum Kim, Sung Jin Oh, Seung M |
description | We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at >450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of >85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to >98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries. |
doi_str_mv | 10.1021/cm9801643 |
format | Article |
fullrecord | <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1909999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d23959074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-a34a33c1858ebd5e7aaca6ef42cc3e872fa8e03f01f79c066f1600479b20f7f73</originalsourceid><addsrcrecordid>eNo90MtOwzAQBVALgUQpLPgDL2AZGMeJnSxReFUtaiWCWFpT11ZSmofsgChfj6FQL8aLObqyLyHnDK4YxOxaN3kGTCT8gIxYGkOUAsSHZARZLqNEpuKYnHi_BmCBZyNSLZzp0eFQdy3tLJ3h1jizok_tPKYfNdKyMq7BDb01umv6ztf_chpIQrFd0cng6d3G6MF1ujJNrQMvqhCqB-Pqr99sf0qOLG68Ofu7x-Tl_q4sHqPZ_GFS3Mwi5EwMYSbIuWZZmpnlKjUSUaMwNom15iaTscXMALfArMw1CGGZAEhkvozBSiv5mFzscnv04SHWYatrr3pXN-i2iuWQhxNYtGO1H8znfo3uTQnJZarKxbMqOStehczUNPjLnUft1bp7d234hGKgflpX-9b5N856c8U</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><source>ACS Publications</source><creator>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</creator><creatorcontrib>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</creatorcontrib><description>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at >450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of >85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to >98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm9801643</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology</subject><ispartof>Chemistry of materials, 1999-03, Vol.11 (3), p.557-563</ispartof><rights>Copyright © 1999 American Chemical Society</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm9801643$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm9801643$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1909999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sa Heum</creatorcontrib><creatorcontrib>Kim, Sung Jin</creatorcontrib><creatorcontrib>Oh, Seung M</creatorcontrib><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at >450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of >85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to >98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo90MtOwzAQBVALgUQpLPgDL2AZGMeJnSxReFUtaiWCWFpT11ZSmofsgChfj6FQL8aLObqyLyHnDK4YxOxaN3kGTCT8gIxYGkOUAsSHZARZLqNEpuKYnHi_BmCBZyNSLZzp0eFQdy3tLJ3h1jizok_tPKYfNdKyMq7BDb01umv6ztf_chpIQrFd0cng6d3G6MF1ujJNrQMvqhCqB-Pqr99sf0qOLG68Ofu7x-Tl_q4sHqPZ_GFS3Mwi5EwMYSbIuWZZmpnlKjUSUaMwNom15iaTscXMALfArMw1CGGZAEhkvozBSiv5mFzscnv04SHWYatrr3pXN-i2iuWQhxNYtGO1H8znfo3uTQnJZarKxbMqOStehczUNPjLnUft1bp7d234hGKgflpX-9b5N856c8U</recordid><startdate>19990315</startdate><enddate>19990315</enddate><creator>Kim, Sa Heum</creator><creator>Kim, Sung Jin</creator><creator>Oh, Seung M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>19990315</creationdate><title>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</title><author>Kim, Sa Heum ; Kim, Sung Jin ; Oh, Seung M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-a34a33c1858ebd5e7aaca6ef42cc3e872fa8e03f01f79c066f1600479b20f7f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sa Heum</creatorcontrib><creatorcontrib>Kim, Sung Jin</creatorcontrib><creatorcontrib>Oh, Seung M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sa Heum</au><au>Kim, Sung Jin</au><au>Oh, Seung M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>1999-03-15</date><risdate>1999</risdate><volume>11</volume><issue>3</issue><spage>557</spage><epage>563</epage><pages>557-563</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>We report here the preparation of layered MnO2 and the preliminary results on its cathodic performance in Li secondary batteries. The thermal decomposition of KMnO4 powder at 250−1000 °C in air produces K x MnO2+ δ·yH2O (x = 0.27−0.31, δ = 0.07−0.13, and y = 0.47−0.89) with a product yield of 67−79% based on the Mn molar quantity. It can be judged from the Rietveld refinement on the X-ray diffraction pattern that the 800 °C-prepared sample has a layered structure (hexagonal unit cell, space group = P63/mmc, a = 2.84 Å, and c = 14.16 Å), where the K+ ions and H2O molecules reside at the interlayer trigonal prismatic sites (P2-type structure). Contrary to the previous findings whereby the layered MnO2 transforms to α-/γ-MnO2 phases or manganese suboxides at >450 °C, such impurities are negligible in this synthesis even at higher temperatures. The success of synthesis is ascribed to the high population of K+ ions in the pyrolyzing media that act as pillaring cations to stabilize the layered framework. In addition, the absence of a suboxide transition is indebted to the highly oxidizing species such as O2, MnO4 2- and MnO4 3-, which are produced during the pyrolyzing process. The materials show a powder density as high as 1.36 g cm-3 and the Mn4+ fraction of >85%, which gives a theoretical capacity of 210−230 mA h g-1 based on a one-electron charge/discharge reaction. A higher product yield up to >98% is achieved by pyrolyzing KMnO4 with an addition of manganese suboxides (Mn2O3, Mn3O4, or MnO). Finally, the preliminary cell tests show that the materials give some promising features as the cathode materials for Li secondary batteries.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm9801643</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 1999-03, Vol.11 (3), p.557-563 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_pascalfrancis_primary_1909999 |
source | ACS Publications |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology |
title | Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Layered%20MnO2%20via%20Thermal%20Decomposition%20of%20KMnO4%20and%20Its%20Electrochemical%20Characterizations&rft.jtitle=Chemistry%20of%20materials&rft.au=Kim,%20Sa%20Heum&rft.date=1999-03-15&rft.volume=11&rft.issue=3&rft.spage=557&rft.epage=563&rft.pages=557-563&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm9801643&rft_dat=%3Cacs_pasca%3Ed23959074%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |