Lip Localization Based on Active Shape Model and Gaussian Mixture Model

This paper describes an efficient method for locating lip. Lip deformation is modeled by a statistically deformable model based on Active Shape Model(ASM). In ASM based methods, it is assumed that a training set forms a cluster in shape parameter space. However if there are some clusters in shape pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jang, Kyung Shik, Han, Soowhan, Lee, Imgeun, Woo, Young Woon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue
container_start_page 1049
container_title
container_volume
creator Jang, Kyung Shik
Han, Soowhan
Lee, Imgeun
Woo, Young Woon
description This paper describes an efficient method for locating lip. Lip deformation is modeled by a statistically deformable model based on Active Shape Model(ASM). In ASM based methods, it is assumed that a training set forms a cluster in shape parameter space. However if there are some clusters in shape parameter space due to an incorrect position of landmark point, ASM may not be able to locate new examples accurately. In this paper, Gaussian mixture is used to characterize the distribution of shape parameter. The Expectation Maximization algorithm is used to determine the maximum likelihood parameters of Gaussian mixture. During search, we resolved the updated locations by projecting a shape into the shape parameter space by using Gaussian mixture. The experiment was performed on many images, and showed very encouraging result.
doi_str_mv 10.1007/11949534_105
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_19008313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19008313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-8fd49d0620dec52db471a5492e2aff0dfe1f75a826382a692cd0a7b7e932ed303</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1LopTu-ABv2CAFxo_E9rJUUJBSsQDW0TS2wVCSKE4r4OsxapGYzVzpHI1Gl5AzBpcMQF0xZqTJhawY5HvkROQSCs2N1vtkxArGMiGkOSATo_QfU_KQjEAAz1IUx2QS4xukESw3mo3IvAwdLdsaV-Ebh9A29BqjszSFaT2EjaOPr9g5umitW1FsLJ3jOsaADV2Ez2Hd79ApOfK4im6y22PyfHvzNLvLyof5_WxaZjUvxJBpb6WxUHCwrs65XUrFMJeGO47eg_WOeZWjTrLmWBheW0C1VM4I7qwAMSbn27sdxvS077GpQ6y6Pnxg_1UxA6AFE8m72HoxoebF9dWybd9jaq76rbL6X6X4AZODX4s</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lip Localization Based on Active Shape Model and Gaussian Mixture Model</title><source>Springer Books</source><creator>Jang, Kyung Shik ; Han, Soowhan ; Lee, Imgeun ; Woo, Young Woon</creator><contributor>Lie, Wen-Nung ; Chang, Long-Wen</contributor><creatorcontrib>Jang, Kyung Shik ; Han, Soowhan ; Lee, Imgeun ; Woo, Young Woon ; Lie, Wen-Nung ; Chang, Long-Wen</creatorcontrib><description>This paper describes an efficient method for locating lip. Lip deformation is modeled by a statistically deformable model based on Active Shape Model(ASM). In ASM based methods, it is assumed that a training set forms a cluster in shape parameter space. However if there are some clusters in shape parameter space due to an incorrect position of landmark point, ASM may not be able to locate new examples accurately. In this paper, Gaussian mixture is used to characterize the distribution of shape parameter. The Expectation Maximization algorithm is used to determine the maximum likelihood parameters of Gaussian mixture. During search, we resolved the updated locations by projecting a shape into the shape parameter space by using Gaussian mixture. The experiment was performed on many images, and showed very encouraging result.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540682974</identifier><identifier>ISBN: 354068297X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540682988</identifier><identifier>EISBN: 9783540682981</identifier><identifier>DOI: 10.1007/11949534_105</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active Shape Model ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Deformable Model ; Exact sciences and technology ; Gaussian Mixture Model ; Landmark Point ; Pattern recognition. Digital image processing. Computational geometry ; Shape Parameter</subject><ispartof>Advances in Image and Video Technology, 2006, p.1049-1058</ispartof><rights>Springer-Verlag Berlin Heidelberg 2006</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-8fd49d0620dec52db471a5492e2aff0dfe1f75a826382a692cd0a7b7e932ed303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11949534_105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11949534_105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19008313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Lie, Wen-Nung</contributor><contributor>Chang, Long-Wen</contributor><creatorcontrib>Jang, Kyung Shik</creatorcontrib><creatorcontrib>Han, Soowhan</creatorcontrib><creatorcontrib>Lee, Imgeun</creatorcontrib><creatorcontrib>Woo, Young Woon</creatorcontrib><title>Lip Localization Based on Active Shape Model and Gaussian Mixture Model</title><title>Advances in Image and Video Technology</title><description>This paper describes an efficient method for locating lip. Lip deformation is modeled by a statistically deformable model based on Active Shape Model(ASM). In ASM based methods, it is assumed that a training set forms a cluster in shape parameter space. However if there are some clusters in shape parameter space due to an incorrect position of landmark point, ASM may not be able to locate new examples accurately. In this paper, Gaussian mixture is used to characterize the distribution of shape parameter. The Expectation Maximization algorithm is used to determine the maximum likelihood parameters of Gaussian mixture. During search, we resolved the updated locations by projecting a shape into the shape parameter space by using Gaussian mixture. The experiment was performed on many images, and showed very encouraging result.</description><subject>Active Shape Model</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Deformable Model</subject><subject>Exact sciences and technology</subject><subject>Gaussian Mixture Model</subject><subject>Landmark Point</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape Parameter</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540682974</isbn><isbn>354068297X</isbn><isbn>3540682988</isbn><isbn>9783540682981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtOwzAQRc1LopTu-ABv2CAFxo_E9rJUUJBSsQDW0TS2wVCSKE4r4OsxapGYzVzpHI1Gl5AzBpcMQF0xZqTJhawY5HvkROQSCs2N1vtkxArGMiGkOSATo_QfU_KQjEAAz1IUx2QS4xukESw3mo3IvAwdLdsaV-Ebh9A29BqjszSFaT2EjaOPr9g5umitW1FsLJ3jOsaADV2Ez2Hd79ApOfK4im6y22PyfHvzNLvLyof5_WxaZjUvxJBpb6WxUHCwrs65XUrFMJeGO47eg_WOeZWjTrLmWBheW0C1VM4I7qwAMSbn27sdxvS077GpQ6y6Pnxg_1UxA6AFE8m72HoxoebF9dWybd9jaq76rbL6X6X4AZODX4s</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Jang, Kyung Shik</creator><creator>Han, Soowhan</creator><creator>Lee, Imgeun</creator><creator>Woo, Young Woon</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2006</creationdate><title>Lip Localization Based on Active Shape Model and Gaussian Mixture Model</title><author>Jang, Kyung Shik ; Han, Soowhan ; Lee, Imgeun ; Woo, Young Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-8fd49d0620dec52db471a5492e2aff0dfe1f75a826382a692cd0a7b7e932ed303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Active Shape Model</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Deformable Model</topic><topic>Exact sciences and technology</topic><topic>Gaussian Mixture Model</topic><topic>Landmark Point</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape Parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Kyung Shik</creatorcontrib><creatorcontrib>Han, Soowhan</creatorcontrib><creatorcontrib>Lee, Imgeun</creatorcontrib><creatorcontrib>Woo, Young Woon</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Kyung Shik</au><au>Han, Soowhan</au><au>Lee, Imgeun</au><au>Woo, Young Woon</au><au>Lie, Wen-Nung</au><au>Chang, Long-Wen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lip Localization Based on Active Shape Model and Gaussian Mixture Model</atitle><btitle>Advances in Image and Video Technology</btitle><date>2006</date><risdate>2006</risdate><spage>1049</spage><epage>1058</epage><pages>1049-1058</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540682974</isbn><isbn>354068297X</isbn><eisbn>3540682988</eisbn><eisbn>9783540682981</eisbn><abstract>This paper describes an efficient method for locating lip. Lip deformation is modeled by a statistically deformable model based on Active Shape Model(ASM). In ASM based methods, it is assumed that a training set forms a cluster in shape parameter space. However if there are some clusters in shape parameter space due to an incorrect position of landmark point, ASM may not be able to locate new examples accurately. In this paper, Gaussian mixture is used to characterize the distribution of shape parameter. The Expectation Maximization algorithm is used to determine the maximum likelihood parameters of Gaussian mixture. During search, we resolved the updated locations by projecting a shape into the shape parameter space by using Gaussian mixture. The experiment was performed on many images, and showed very encouraging result.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11949534_105</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Image and Video Technology, 2006, p.1049-1058
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_19008313
source Springer Books
subjects Active Shape Model
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Deformable Model
Exact sciences and technology
Gaussian Mixture Model
Landmark Point
Pattern recognition. Digital image processing. Computational geometry
Shape Parameter
title Lip Localization Based on Active Shape Model and Gaussian Mixture Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lip%20Localization%20Based%20on%20Active%20Shape%20Model%20and%20Gaussian%20Mixture%20Model&rft.btitle=Advances%20in%20Image%20and%20Video%20Technology&rft.au=Jang,%20Kyung%20Shik&rft.date=2006&rft.spage=1049&rft.epage=1058&rft.pages=1049-1058&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540682974&rft.isbn_list=354068297X&rft_id=info:doi/10.1007/11949534_105&rft_dat=%3Cpascalfrancis_sprin%3E19008313%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540682988&rft.eisbn_list=9783540682981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true