Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter
Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a rest...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1061 |
---|---|
container_issue | 4 |
container_start_page | 1049 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 30 |
creator | Kendoul, F Lara, D Fantoni, I Lozano, R |
description | Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing. |
doi_str_mv | 10.2514/1.27882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18942350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30002300</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4D_oWCJ7zozKFN2ssxPOFQlHkd0uYLdKTNTFLQf290A0G8SUJ4eN-PD6ETgqe0JMU1mVJRVXQHTUjJWM6qqthFEywYyUtc4310EMIKY8I4ERP0-ArK5suuh-zJDbYbQPnspm9Aa9DZ3A3RO5sZ5zM1ZLMxusH1bgzZy6i0dzH934PtWreO4I_QnlE2wPH2PkRvtzfL-X2-eL57mM8WuWJCxLxRWnNdY0bBGJEequAFcNo0nHBGuICq0Zo2GpoSaMW0IJhoXIuGG85NzQ7RxSZ37d37CCHKvgstWKsGSLNJhjGm6Ujw9A9cudEPaTZJGWGiZkXFk7rcqNa7EDwYufZdr_ynJFh-r1QS-bPSJM-3eSq0yhqvhrYLv7yqC8rK796rjVOdUr-d2xi51kaa0doIHzHZs3_tn-ovmu-OTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313793486</pqid></control><display><type>article</type><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><source>Alma/SFX Local Collection</source><creator>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</creator><creatorcontrib>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</creatorcontrib><description>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.27882</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Controllers ; Design ; Exact sciences and technology ; Helicopter control ; Helicopters ; Laboratories ; Neural networks ; Nonlinear control ; Robotics ; Robust control ; Unmanned aerial vehicles ; Vehicles ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</citedby><cites>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18942350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendoul, F</creatorcontrib><creatorcontrib>Lara, D</creatorcontrib><creatorcontrib>Fantoni, I</creatorcontrib><creatorcontrib>Lozano, R</creatorcontrib><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><title>Journal of guidance, control, and dynamics</title><description>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</description><subject>Aircraft</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Exact sciences and technology</subject><subject>Helicopter control</subject><subject>Helicopters</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4D_oWCJ7zozKFN2ssxPOFQlHkd0uYLdKTNTFLQf290A0G8SUJ4eN-PD6ETgqe0JMU1mVJRVXQHTUjJWM6qqthFEywYyUtc4310EMIKY8I4ERP0-ArK5suuh-zJDbYbQPnspm9Aa9DZ3A3RO5sZ5zM1ZLMxusH1bgzZy6i0dzH934PtWreO4I_QnlE2wPH2PkRvtzfL-X2-eL57mM8WuWJCxLxRWnNdY0bBGJEequAFcNo0nHBGuICq0Zo2GpoSaMW0IJhoXIuGG85NzQ7RxSZ37d37CCHKvgstWKsGSLNJhjGm6Ujw9A9cudEPaTZJGWGiZkXFk7rcqNa7EDwYufZdr_ynJFh-r1QS-bPSJM-3eSq0yhqvhrYLv7yqC8rK796rjVOdUr-d2xi51kaa0doIHzHZs3_tn-ovmu-OTA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Kendoul, F</creator><creator>Lara, D</creator><creator>Fantoni, I</creator><creator>Lozano, R</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><author>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aircraft</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Exact sciences and technology</topic><topic>Helicopter control</topic><topic>Helicopters</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendoul, F</creatorcontrib><creatorcontrib>Lara, D</creatorcontrib><creatorcontrib>Fantoni, I</creatorcontrib><creatorcontrib>Lozano, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendoul, F</au><au>Lara, D</au><au>Fantoni, I</au><au>Lozano, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>30</volume><issue>4</issue><spage>1049</spage><epage>1061</epage><pages>1049-1061</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.27882</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_pascalfrancis_primary_18942350 |
source | Alma/SFX Local Collection |
subjects | Aircraft Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Controllers Design Exact sciences and technology Helicopter control Helicopters Laboratories Neural networks Nonlinear control Robotics Robust control Unmanned aerial vehicles Vehicles Velocity |
title | Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Nonlinear%20Embedded%20Control%20for%20an%20Autonomous%20Quadrotor%20Helicopter&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Kendoul,%20F&rft.date=2007-07-01&rft.volume=30&rft.issue=4&rft.spage=1049&rft.epage=1061&rft.pages=1049-1061&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.27882&rft_dat=%3Cproquest_pasca%3E30002300%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313793486&rft_id=info:pmid/&rfr_iscdi=true |