Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter

Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a rest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061
Hauptverfasser: Kendoul, F, Lara, D, Fantoni, I, Lozano, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1061
container_issue 4
container_start_page 1049
container_title Journal of guidance, control, and dynamics
container_volume 30
creator Kendoul, F
Lara, D
Fantoni, I
Lozano, R
description Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.
doi_str_mv 10.2514/1.27882
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18942350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30002300</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4D_oWCJ7zozKFN2ssxPOFQlHkd0uYLdKTNTFLQf290A0G8SUJ4eN-PD6ETgqe0JMU1mVJRVXQHTUjJWM6qqthFEywYyUtc4310EMIKY8I4ERP0-ArK5suuh-zJDbYbQPnspm9Aa9DZ3A3RO5sZ5zM1ZLMxusH1bgzZy6i0dzH934PtWreO4I_QnlE2wPH2PkRvtzfL-X2-eL57mM8WuWJCxLxRWnNdY0bBGJEequAFcNo0nHBGuICq0Zo2GpoSaMW0IJhoXIuGG85NzQ7RxSZ37d37CCHKvgstWKsGSLNJhjGm6Ujw9A9cudEPaTZJGWGiZkXFk7rcqNa7EDwYufZdr_ynJFh-r1QS-bPSJM-3eSq0yhqvhrYLv7yqC8rK796rjVOdUr-d2xi51kaa0doIHzHZs3_tn-ovmu-OTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313793486</pqid></control><display><type>article</type><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><source>Alma/SFX Local Collection</source><creator>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</creator><creatorcontrib>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</creatorcontrib><description>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.27882</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Controllers ; Design ; Exact sciences and technology ; Helicopter control ; Helicopters ; Laboratories ; Neural networks ; Nonlinear control ; Robotics ; Robust control ; Unmanned aerial vehicles ; Vehicles ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</citedby><cites>FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18942350$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kendoul, F</creatorcontrib><creatorcontrib>Lara, D</creatorcontrib><creatorcontrib>Fantoni, I</creatorcontrib><creatorcontrib>Lozano, R</creatorcontrib><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><title>Journal of guidance, control, and dynamics</title><description>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</description><subject>Aircraft</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Exact sciences and technology</subject><subject>Helicopter control</subject><subject>Helicopters</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Robotics</subject><subject>Robust control</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4D_oWCJ7zozKFN2ssxPOFQlHkd0uYLdKTNTFLQf290A0G8SUJ4eN-PD6ETgqe0JMU1mVJRVXQHTUjJWM6qqthFEywYyUtc4310EMIKY8I4ERP0-ArK5suuh-zJDbYbQPnspm9Aa9DZ3A3RO5sZ5zM1ZLMxusH1bgzZy6i0dzH934PtWreO4I_QnlE2wPH2PkRvtzfL-X2-eL57mM8WuWJCxLxRWnNdY0bBGJEequAFcNo0nHBGuICq0Zo2GpoSaMW0IJhoXIuGG85NzQ7RxSZ37d37CCHKvgstWKsGSLNJhjGm6Ujw9A9cudEPaTZJGWGiZkXFk7rcqNa7EDwYufZdr_ynJFh-r1QS-bPSJM-3eSq0yhqvhrYLv7yqC8rK796rjVOdUr-d2xi51kaa0doIHzHZs3_tn-ovmu-OTA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Kendoul, F</creator><creator>Lara, D</creator><creator>Fantoni, I</creator><creator>Lozano, R</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</title><author>Kendoul, F ; Lara, D ; Fantoni, I ; Lozano, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-badd6d9032eff7d90a464e62bb6163167e8bdd2bdeb5e283d7101d097b6f66f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aircraft</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Exact sciences and technology</topic><topic>Helicopter control</topic><topic>Helicopters</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Robotics</topic><topic>Robust control</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendoul, F</creatorcontrib><creatorcontrib>Lara, D</creatorcontrib><creatorcontrib>Fantoni, I</creatorcontrib><creatorcontrib>Lozano, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendoul, F</au><au>Lara, D</au><au>Fantoni, I</au><au>Lozano, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>30</volume><issue>4</issue><spage>1049</spage><epage>1061</epage><pages>1049-1061</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>Control system design of aerospace vehicles with actuator saturation is an important practical design problem that many previous approaches to nonlinear autopilot design did not consider. In particular, small unmanned aerial vehicle rotorcraft actuators often have physical limitations such as a restricted onboard power supply. Disregard of actuator saturation can affect the final performance, but the reduction in performance can be mitigated if actuator saturation is included in the controller design. In this paper, we propose a nested-saturation-based nonlinear controller for the stabilization of a rotary-wing aircraft. This control strategy allows the incorporation, of actuator magnitude saturation and has satisfactory dynamic performance. The nested-saturation technique enables the controller to ensure the global asymptotic stability of a quadrotor helicopter while improving the performance of the closed-loop system. By using Lyapunov analysis, the convergence property is established for the complete nonlinear model of the quadrotor rotorcraft. Simulation results show the performance of the proposed control strategy. Using embedded sensors and onboard control, we performed a real-time autonomous flight. Indeed, experimental results have shown that the proposed control strategy is able to autonomously perform the tasks of taking off, hovering, and landing.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.27882</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2007-07, Vol.30 (4), p.1049-1061
issn 0731-5090
1533-3884
language eng
recordid cdi_pascalfrancis_primary_18942350
source Alma/SFX Local Collection
subjects Aircraft
Applied sciences
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Controllers
Design
Exact sciences and technology
Helicopter control
Helicopters
Laboratories
Neural networks
Nonlinear control
Robotics
Robust control
Unmanned aerial vehicles
Vehicles
Velocity
title Real-Time Nonlinear Embedded Control for an Autonomous Quadrotor Helicopter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Nonlinear%20Embedded%20Control%20for%20an%20Autonomous%20Quadrotor%20Helicopter&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Kendoul,%20F&rft.date=2007-07-01&rft.volume=30&rft.issue=4&rft.spage=1049&rft.epage=1061&rft.pages=1049-1061&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.27882&rft_dat=%3Cproquest_pasca%3E30002300%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313793486&rft_id=info:pmid/&rfr_iscdi=true