A New Approach to Image Copy Detection Based on Extended Feature Sets

Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-08, Vol.16 (8), p.2069-2079
Hauptverfasser: HSIAO, Jen-Hao, CHEN, Chu-Song, CHIEN, Lee-Feng, CHEN, Ming-Syan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2079
container_issue 8
container_start_page 2069
container_title IEEE transactions on image processing
container_volume 16
creator HSIAO, Jen-Hao
CHEN, Chu-Song
CHIEN, Lee-Feng
CHEN, Ming-Syan
description Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.
doi_str_mv 10.1109/TIP.2007.900099
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18929312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4271526</ieee_id><sourcerecordid>68147265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiq3VswdBgqA9zfa9_M5xXbftQlHBeg7ZzBudsjuzncyg_e9N3cWCh5JDXsgnjyRfxl4jzBDBn12vvs4EgJ15APD-CTtGr7ACUOJpqUHbyqLyR-xFzjcAqDSa5-wIrXFOoDhmyzn_TL_4fLcb-ph-8rHnq238QXzR7-74JxopjW3f8Y8xU81Lsfw9UleX-pziOA3Ev9GYX7JnTdxkenWYT9j38-X14rK6-nKxWsyvqqQRx6qJa4S6TjIlEbVRja4dRHBlsV5bY72PRllVA0ihQSLGmBrty5DOxqTkCTvd9y23vZ0oj2Hb5kSbTeyon3Jw3qBzXvoiPzwqjUNlhdEFvvsP3vTT0JVXBGfKJSRoU9DZHqWhz3mgJuyGdhuHu4AQ7oMIJYhwH0TYB1FOvD20ndZbqh_84ecLeH8AMae4aYbYpTY_OOeFl3_dm71riejfthIWtTDyDzA_lYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033056</pqid></control><display><type>article</type><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><source>IEEE Electronic Library (IEL)</source><creator>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</creator><creatorcontrib>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</creatorcontrib><description>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.900099</identifier><identifier>PMID: 17688212</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Classifiers ; Computer Graphics ; Computer Security ; Computer vision ; Concentrates ; Data Compression - methods ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Digital images ; Exact sciences and technology ; Extended feature set (EFS) ; Gaussian mixture model ; image copy detection ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Intellectual property ; Internet ; Law ; Learning ; Legal factors ; ordinal measure ; Patents as Topic ; pattern classification ; Pattern recognition ; Pattern Recognition, Automated - methods ; Product Labeling - methods ; Reproducibility of Results ; Reproduction ; Resists ; Robustness ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; support vector machine ; Telecommunications and information theory ; Training ; Training data ; Watermarking</subject><ispartof>IEEE transactions on image processing, 2007-08, Vol.16 (8), p.2069-2079</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</citedby><cites>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4271526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4271526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18929312$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17688212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HSIAO, Jen-Hao</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>CHIEN, Lee-Feng</creatorcontrib><creatorcontrib>CHEN, Ming-Syan</creatorcontrib><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Classifiers</subject><subject>Computer Graphics</subject><subject>Computer Security</subject><subject>Computer vision</subject><subject>Concentrates</subject><subject>Data Compression - methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Digital images</subject><subject>Exact sciences and technology</subject><subject>Extended feature set (EFS)</subject><subject>Gaussian mixture model</subject><subject>image copy detection</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Intellectual property</subject><subject>Internet</subject><subject>Law</subject><subject>Learning</subject><subject>Legal factors</subject><subject>ordinal measure</subject><subject>Patents as Topic</subject><subject>pattern classification</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Product Labeling - methods</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>Resists</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>support vector machine</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Training data</subject><subject>Watermarking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agiq3VswdBgqA9zfa9_M5xXbftQlHBeg7ZzBudsjuzncyg_e9N3cWCh5JDXsgnjyRfxl4jzBDBn12vvs4EgJ15APD-CTtGr7ACUOJpqUHbyqLyR-xFzjcAqDSa5-wIrXFOoDhmyzn_TL_4fLcb-ph-8rHnq238QXzR7-74JxopjW3f8Y8xU81Lsfw9UleX-pziOA3Ev9GYX7JnTdxkenWYT9j38-X14rK6-nKxWsyvqqQRx6qJa4S6TjIlEbVRja4dRHBlsV5bY72PRllVA0ihQSLGmBrty5DOxqTkCTvd9y23vZ0oj2Hb5kSbTeyon3Jw3qBzXvoiPzwqjUNlhdEFvvsP3vTT0JVXBGfKJSRoU9DZHqWhz3mgJuyGdhuHu4AQ7oMIJYhwH0TYB1FOvD20ndZbqh_84ecLeH8AMae4aYbYpTY_OOeFl3_dm71riejfthIWtTDyDzA_lYo</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>HSIAO, Jen-Hao</creator><creator>CHEN, Chu-Song</creator><creator>CHIEN, Lee-Feng</creator><creator>CHEN, Ming-Syan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><author>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Classifiers</topic><topic>Computer Graphics</topic><topic>Computer Security</topic><topic>Computer vision</topic><topic>Concentrates</topic><topic>Data Compression - methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Digital images</topic><topic>Exact sciences and technology</topic><topic>Extended feature set (EFS)</topic><topic>Gaussian mixture model</topic><topic>image copy detection</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Intellectual property</topic><topic>Internet</topic><topic>Law</topic><topic>Learning</topic><topic>Legal factors</topic><topic>ordinal measure</topic><topic>Patents as Topic</topic><topic>pattern classification</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Product Labeling - methods</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>Resists</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>support vector machine</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Training data</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HSIAO, Jen-Hao</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>CHIEN, Lee-Feng</creatorcontrib><creatorcontrib>CHEN, Ming-Syan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HSIAO, Jen-Hao</au><au>CHEN, Chu-Song</au><au>CHIEN, Lee-Feng</au><au>CHEN, Ming-Syan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Image Copy Detection Based on Extended Feature Sets</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>16</volume><issue>8</issue><spage>2069</spage><epage>2079</epage><pages>2069-2079</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17688212</pmid><doi>10.1109/TIP.2007.900099</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2007-08, Vol.16 (8), p.2069-2079
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_18929312
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Classifiers
Computer Graphics
Computer Security
Computer vision
Concentrates
Data Compression - methods
Detection, estimation, filtering, equalization, prediction
Detectors
Digital images
Exact sciences and technology
Extended feature set (EFS)
Gaussian mixture model
image copy detection
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Intellectual property
Internet
Law
Learning
Legal factors
ordinal measure
Patents as Topic
pattern classification
Pattern recognition
Pattern Recognition, Automated - methods
Product Labeling - methods
Reproducibility of Results
Reproduction
Resists
Robustness
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal representation. Spectral analysis
Signal, noise
support vector machine
Telecommunications and information theory
Training
Training data
Watermarking
title A New Approach to Image Copy Detection Based on Extended Feature Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Image%20Copy%20Detection%20Based%20on%20Extended%20Feature%20Sets&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=HSIAO,%20Jen-Hao&rft.date=2007-08-01&rft.volume=16&rft.issue=8&rft.spage=2069&rft.epage=2079&rft.pages=2069-2079&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.900099&rft_dat=%3Cproquest_RIE%3E68147265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033056&rft_id=info:pmid/17688212&rft_ieee_id=4271526&rfr_iscdi=true