A New Approach to Image Copy Detection Based on Extended Feature Sets
Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2007-08, Vol.16 (8), p.2069-2079 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2079 |
---|---|
container_issue | 8 |
container_start_page | 2069 |
container_title | IEEE transactions on image processing |
container_volume | 16 |
creator | HSIAO, Jen-Hao CHEN, Chu-Song CHIEN, Lee-Feng CHEN, Ming-Syan |
description | Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection. |
doi_str_mv | 10.1109/TIP.2007.900099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18929312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4271526</ieee_id><sourcerecordid>68147265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiq3VswdBgqA9zfa9_M5xXbftQlHBeg7ZzBudsjuzncyg_e9N3cWCh5JDXsgnjyRfxl4jzBDBn12vvs4EgJ15APD-CTtGr7ACUOJpqUHbyqLyR-xFzjcAqDSa5-wIrXFOoDhmyzn_TL_4fLcb-ph-8rHnq238QXzR7-74JxopjW3f8Y8xU81Lsfw9UleX-pziOA3Ev9GYX7JnTdxkenWYT9j38-X14rK6-nKxWsyvqqQRx6qJa4S6TjIlEbVRja4dRHBlsV5bY72PRllVA0ihQSLGmBrty5DOxqTkCTvd9y23vZ0oj2Hb5kSbTeyon3Jw3qBzXvoiPzwqjUNlhdEFvvsP3vTT0JVXBGfKJSRoU9DZHqWhz3mgJuyGdhuHu4AQ7oMIJYhwH0TYB1FOvD20ndZbqh_84ecLeH8AMae4aYbYpTY_OOeFl3_dm71riejfthIWtTDyDzA_lYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033056</pqid></control><display><type>article</type><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><source>IEEE Electronic Library (IEL)</source><creator>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</creator><creatorcontrib>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</creatorcontrib><description>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.900099</identifier><identifier>PMID: 17688212</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Classifiers ; Computer Graphics ; Computer Security ; Computer vision ; Concentrates ; Data Compression - methods ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Digital images ; Exact sciences and technology ; Extended feature set (EFS) ; Gaussian mixture model ; image copy detection ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Intellectual property ; Internet ; Law ; Learning ; Legal factors ; ordinal measure ; Patents as Topic ; pattern classification ; Pattern recognition ; Pattern Recognition, Automated - methods ; Product Labeling - methods ; Reproducibility of Results ; Reproduction ; Resists ; Robustness ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; support vector machine ; Telecommunications and information theory ; Training ; Training data ; Watermarking</subject><ispartof>IEEE transactions on image processing, 2007-08, Vol.16 (8), p.2069-2079</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</citedby><cites>FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4271526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4271526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18929312$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17688212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HSIAO, Jen-Hao</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>CHIEN, Lee-Feng</creatorcontrib><creatorcontrib>CHEN, Ming-Syan</creatorcontrib><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Classifiers</subject><subject>Computer Graphics</subject><subject>Computer Security</subject><subject>Computer vision</subject><subject>Concentrates</subject><subject>Data Compression - methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Digital images</subject><subject>Exact sciences and technology</subject><subject>Extended feature set (EFS)</subject><subject>Gaussian mixture model</subject><subject>image copy detection</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Intellectual property</subject><subject>Internet</subject><subject>Law</subject><subject>Learning</subject><subject>Legal factors</subject><subject>ordinal measure</subject><subject>Patents as Topic</subject><subject>pattern classification</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Product Labeling - methods</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>Resists</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>support vector machine</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Training data</subject><subject>Watermarking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agiq3VswdBgqA9zfa9_M5xXbftQlHBeg7ZzBudsjuzncyg_e9N3cWCh5JDXsgnjyRfxl4jzBDBn12vvs4EgJ15APD-CTtGr7ACUOJpqUHbyqLyR-xFzjcAqDSa5-wIrXFOoDhmyzn_TL_4fLcb-ph-8rHnq238QXzR7-74JxopjW3f8Y8xU81Lsfw9UleX-pziOA3Ev9GYX7JnTdxkenWYT9j38-X14rK6-nKxWsyvqqQRx6qJa4S6TjIlEbVRja4dRHBlsV5bY72PRllVA0ihQSLGmBrty5DOxqTkCTvd9y23vZ0oj2Hb5kSbTeyon3Jw3qBzXvoiPzwqjUNlhdEFvvsP3vTT0JVXBGfKJSRoU9DZHqWhz3mgJuyGdhuHu4AQ7oMIJYhwH0TYB1FOvD20ndZbqh_84ecLeH8AMae4aYbYpTY_OOeFl3_dm71riejfthIWtTDyDzA_lYo</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>HSIAO, Jen-Hao</creator><creator>CHEN, Chu-Song</creator><creator>CHIEN, Lee-Feng</creator><creator>CHEN, Ming-Syan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>A New Approach to Image Copy Detection Based on Extended Feature Sets</title><author>HSIAO, Jen-Hao ; CHEN, Chu-Song ; CHIEN, Lee-Feng ; CHEN, Ming-Syan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-fab10ddc3cc2a564f5d80a082a5bb76799a6474d003250311aacf59595387ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Classifiers</topic><topic>Computer Graphics</topic><topic>Computer Security</topic><topic>Computer vision</topic><topic>Concentrates</topic><topic>Data Compression - methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Digital images</topic><topic>Exact sciences and technology</topic><topic>Extended feature set (EFS)</topic><topic>Gaussian mixture model</topic><topic>image copy detection</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Intellectual property</topic><topic>Internet</topic><topic>Law</topic><topic>Learning</topic><topic>Legal factors</topic><topic>ordinal measure</topic><topic>Patents as Topic</topic><topic>pattern classification</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Product Labeling - methods</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>Resists</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>support vector machine</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Training data</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HSIAO, Jen-Hao</creatorcontrib><creatorcontrib>CHEN, Chu-Song</creatorcontrib><creatorcontrib>CHIEN, Lee-Feng</creatorcontrib><creatorcontrib>CHEN, Ming-Syan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HSIAO, Jen-Hao</au><au>CHEN, Chu-Song</au><au>CHIEN, Lee-Feng</au><au>CHEN, Ming-Syan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Image Copy Detection Based on Extended Feature Sets</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>16</volume><issue>8</issue><spage>2069</spage><epage>2079</epage><pages>2069-2079</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Conventional image copy detection research concentrates on finding features that are robust enough to resist various kinds of image attacks. However, finding a globally effective feature is difficult and, in many cases, domain dependent. Instead of simply extracting features from copyrighted images directly, we propose a new framework called the extended feature set for detecting copies of images. In our approach, virtual prior attacks are applied to copyrighted images to generate novel features, which serve as training data. The copy-detection problem can be solved by learning classifiers from the training data, thus, generated. Our approach can be integrated into existing copy detectors to further improve their performance. Experiment results demonstrate that the proposed approach can substantially enhance the accuracy of copy detection.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17688212</pmid><doi>10.1109/TIP.2007.900099</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2007-08, Vol.16 (8), p.2069-2079 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_18929312 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Classifiers Computer Graphics Computer Security Computer vision Concentrates Data Compression - methods Detection, estimation, filtering, equalization, prediction Detectors Digital images Exact sciences and technology Extended feature set (EFS) Gaussian mixture model image copy detection Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Intellectual property Internet Law Learning Legal factors ordinal measure Patents as Topic pattern classification Pattern recognition Pattern Recognition, Automated - methods Product Labeling - methods Reproducibility of Results Reproduction Resists Robustness Sensitivity and Specificity Signal and communications theory Signal processing Signal Processing, Computer-Assisted Signal representation. Spectral analysis Signal, noise support vector machine Telecommunications and information theory Training Training data Watermarking |
title | A New Approach to Image Copy Detection Based on Extended Feature Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Image%20Copy%20Detection%20Based%20on%20Extended%20Feature%20Sets&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=HSIAO,%20Jen-Hao&rft.date=2007-08-01&rft.volume=16&rft.issue=8&rft.spage=2069&rft.epage=2079&rft.pages=2069-2079&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.900099&rft_dat=%3Cproquest_RIE%3E68147265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033056&rft_id=info:pmid/17688212&rft_ieee_id=4271526&rfr_iscdi=true |