Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN
High-performance enhancement-mode (E-mode) AIN (2.5 nm)/GaN heterostructure field-effect transistors (HFETs) were fabricated with a novel method using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). We found that the formation of a 2-D electron gas (2DEG) in the AIN/GaN heterostruc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2007-06, Vol.54 (6), p.1566-1570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 6 |
container_start_page | 1566 |
container_title | IEEE transactions on electron devices |
container_volume | 54 |
creator | Higashiwaki, M. Mimura, T. Matsui, T. |
description | High-performance enhancement-mode (E-mode) AIN (2.5 nm)/GaN heterostructure field-effect transistors (HFETs) were fabricated with a novel method using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). We found that the formation of a 2-D electron gas (2DEG) in the AIN/GaN heterostructure can be controlled by the presence of the Cat-CVD SiN on the barrier layer. Before SiN deposition, the 2DEG at the AIN/GaN heterointerface was completely depleted because of the extremely thin barrier layer. On the other hand, after SiN deposition, the decrease in AIN surface barrier height induced a high-density 2DEG. The E-mode HFETs with gate lengths of 100-180 nm and threshold voltages from +0.14 to +0.55 V showed a maximum drain-current density of 0.70-0.92 A/mm and a maximum extrinsic transconductance of 362-400 mS/mm. A current-gain cutoff frequency of 87 GHz and maximum oscillation frequency of 149 GHz were obtained for the 100-nm-gate devices. |
doi_str_mv | 10.1109/TED.2007.896607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18798296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4215179</ieee_id><sourcerecordid>875046261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d6193b50b03383c026a4688cfd83e7ce102e7307fdac2d580bca71239131fa513</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwM7BESIgp7dmOv8YqDS1SKQMtq-U6DqRKkxKnA_8eV6lAYjqd7nnvTg9CtxhGGIMar7LpiACIkVScgzhDA8yYiBVP-DkaAGAZKyrpJbryfhtaniRkgCCrP01t3c7VXfzS5C6aVMvxzCyj-VO28tHal_VHlJouTt-n0Vu5vEYXham8uznVIVoHMJ3Hi9fZczpZxJYy6OKcY0U3DDZAw1ELhJuES2mLXFInrMNAnKAgitxYkjMJG2sEJlRhigvDMB2ix37vvm2-Ds53eld666rK1K45eC0Fg4QTfiTv_5Hb5tDW4TktORVKKJUEaNxDtm28b12h9225M-23xqCP_nTwp4_-dO8vJB5Oa423piraoKn0fzEplCSKB-6u50rn3O84IZhhoegPeBtz0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863797994</pqid></control><display><type>article</type><title>Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN</title><source>IEEE Electronic Library (IEL)</source><creator>Higashiwaki, M. ; Mimura, T. ; Matsui, T.</creator><creatorcontrib>Higashiwaki, M. ; Mimura, T. ; Matsui, T.</creatorcontrib><description>High-performance enhancement-mode (E-mode) AIN (2.5 nm)/GaN heterostructure field-effect transistors (HFETs) were fabricated with a novel method using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). We found that the formation of a 2-D electron gas (2DEG) in the AIN/GaN heterostructure can be controlled by the presence of the Cat-CVD SiN on the barrier layer. Before SiN deposition, the 2DEG at the AIN/GaN heterointerface was completely depleted because of the extremely thin barrier layer. On the other hand, after SiN deposition, the decrease in AIN surface barrier height induced a high-density 2DEG. The E-mode HFETs with gate lengths of 100-180 nm and threshold voltages from +0.14 to +0.55 V showed a maximum drain-current density of 0.70-0.92 A/mm and a maximum extrinsic transconductance of 362-400 mS/mm. A current-gain cutoff frequency of 87 GHz and maximum oscillation frequency of 149 GHz were obtained for the 100-nm-gate devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.896607</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AlN ; Aluminum nitride ; Applied sciences ; Barrier layers ; catalytic chemical vapor deposition (Cat-CVD) ; Compound structure devices ; current-gain cutoff frequency (f_{T}) ; Density ; Deposition ; Devices ; Electronics ; enhancement-mode (E-mode) ; Etching ; Exact sciences and technology ; Gallium nitride ; Gallium nitrides ; GaN ; HEMTs ; heterostructure field-effect transistor (HFET) ; Heterostructures ; Logic gates ; maximum oscillation frequency (f_{\max}) ; Microelectronic fabrication (materials and surfaces technology) ; MODFETs ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon compounds ; Surface treatment ; Threshold voltage ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2007-06, Vol.54 (6), p.1566-1570</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d6193b50b03383c026a4688cfd83e7ce102e7307fdac2d580bca71239131fa513</citedby><cites>FETCH-LOGICAL-c350t-d6193b50b03383c026a4688cfd83e7ce102e7307fdac2d580bca71239131fa513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4215179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4215179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18798296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Higashiwaki, M.</creatorcontrib><creatorcontrib>Mimura, T.</creatorcontrib><creatorcontrib>Matsui, T.</creatorcontrib><title>Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>High-performance enhancement-mode (E-mode) AIN (2.5 nm)/GaN heterostructure field-effect transistors (HFETs) were fabricated with a novel method using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). We found that the formation of a 2-D electron gas (2DEG) in the AIN/GaN heterostructure can be controlled by the presence of the Cat-CVD SiN on the barrier layer. Before SiN deposition, the 2DEG at the AIN/GaN heterointerface was completely depleted because of the extremely thin barrier layer. On the other hand, after SiN deposition, the decrease in AIN surface barrier height induced a high-density 2DEG. The E-mode HFETs with gate lengths of 100-180 nm and threshold voltages from +0.14 to +0.55 V showed a maximum drain-current density of 0.70-0.92 A/mm and a maximum extrinsic transconductance of 362-400 mS/mm. A current-gain cutoff frequency of 87 GHz and maximum oscillation frequency of 149 GHz were obtained for the 100-nm-gate devices.</description><subject>AlN</subject><subject>Aluminum nitride</subject><subject>Applied sciences</subject><subject>Barrier layers</subject><subject>catalytic chemical vapor deposition (Cat-CVD)</subject><subject>Compound structure devices</subject><subject>current-gain cutoff frequency (f_{T})</subject><subject>Density</subject><subject>Deposition</subject><subject>Devices</subject><subject>Electronics</subject><subject>enhancement-mode (E-mode)</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>HEMTs</subject><subject>heterostructure field-effect transistor (HFET)</subject><subject>Heterostructures</subject><subject>Logic gates</subject><subject>maximum oscillation frequency (f_{\max})</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>MODFETs</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon compounds</subject><subject>Surface treatment</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwM7BESIgp7dmOv8YqDS1SKQMtq-U6DqRKkxKnA_8eV6lAYjqd7nnvTg9CtxhGGIMar7LpiACIkVScgzhDA8yYiBVP-DkaAGAZKyrpJbryfhtaniRkgCCrP01t3c7VXfzS5C6aVMvxzCyj-VO28tHal_VHlJouTt-n0Vu5vEYXham8uznVIVoHMJ3Hi9fZczpZxJYy6OKcY0U3DDZAw1ELhJuES2mLXFInrMNAnKAgitxYkjMJG2sEJlRhigvDMB2ix37vvm2-Ds53eld666rK1K45eC0Fg4QTfiTv_5Hb5tDW4TktORVKKJUEaNxDtm28b12h9225M-23xqCP_nTwp4_-dO8vJB5Oa423piraoKn0fzEplCSKB-6u50rn3O84IZhhoegPeBtz0A</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Higashiwaki, M.</creator><creator>Mimura, T.</creator><creator>Matsui, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070601</creationdate><title>Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN</title><author>Higashiwaki, M. ; Mimura, T. ; Matsui, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d6193b50b03383c026a4688cfd83e7ce102e7307fdac2d580bca71239131fa513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AlN</topic><topic>Aluminum nitride</topic><topic>Applied sciences</topic><topic>Barrier layers</topic><topic>catalytic chemical vapor deposition (Cat-CVD)</topic><topic>Compound structure devices</topic><topic>current-gain cutoff frequency (f_{T})</topic><topic>Density</topic><topic>Deposition</topic><topic>Devices</topic><topic>Electronics</topic><topic>enhancement-mode (E-mode)</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>HEMTs</topic><topic>heterostructure field-effect transistor (HFET)</topic><topic>Heterostructures</topic><topic>Logic gates</topic><topic>maximum oscillation frequency (f_{\max})</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>MODFETs</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon compounds</topic><topic>Surface treatment</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higashiwaki, M.</creatorcontrib><creatorcontrib>Mimura, T.</creatorcontrib><creatorcontrib>Matsui, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Higashiwaki, M.</au><au>Mimura, T.</au><au>Matsui, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-06-01</date><risdate>2007</risdate><volume>54</volume><issue>6</issue><spage>1566</spage><epage>1570</epage><pages>1566-1570</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>High-performance enhancement-mode (E-mode) AIN (2.5 nm)/GaN heterostructure field-effect transistors (HFETs) were fabricated with a novel method using SiN passivation by catalytic chemical vapor deposition (Cat-CVD). We found that the formation of a 2-D electron gas (2DEG) in the AIN/GaN heterostructure can be controlled by the presence of the Cat-CVD SiN on the barrier layer. Before SiN deposition, the 2DEG at the AIN/GaN heterointerface was completely depleted because of the extremely thin barrier layer. On the other hand, after SiN deposition, the decrease in AIN surface barrier height induced a high-density 2DEG. The E-mode HFETs with gate lengths of 100-180 nm and threshold voltages from +0.14 to +0.55 V showed a maximum drain-current density of 0.70-0.92 A/mm and a maximum extrinsic transconductance of 362-400 mS/mm. A current-gain cutoff frequency of 87 GHz and maximum oscillation frequency of 149 GHz were obtained for the 100-nm-gate devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.896607</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2007-06, Vol.54 (6), p.1566-1570 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_18798296 |
source | IEEE Electronic Library (IEL) |
subjects | AlN Aluminum nitride Applied sciences Barrier layers catalytic chemical vapor deposition (Cat-CVD) Compound structure devices current-gain cutoff frequency (f_{T}) Density Deposition Devices Electronics enhancement-mode (E-mode) Etching Exact sciences and technology Gallium nitride Gallium nitrides GaN HEMTs heterostructure field-effect transistor (HFET) Heterostructures Logic gates maximum oscillation frequency (f_{\max}) Microelectronic fabrication (materials and surfaces technology) MODFETs Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon compounds Surface treatment Threshold voltage Transistors |
title | Enhancement-Mode AlN/GaN HFETs Using Cat-CVD SiN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement-Mode%20AlN/GaN%20HFETs%20Using%20Cat-CVD%20SiN&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Higashiwaki,%20M.&rft.date=2007-06-01&rft.volume=54&rft.issue=6&rft.spage=1566&rft.epage=1570&rft.pages=1566-1570&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.896607&rft_dat=%3Cproquest_RIE%3E875046261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863797994&rft_id=info:pmid/&rft_ieee_id=4215179&rfr_iscdi=true |