Stagnation Temperature Effect on the Prandtl Meyer Function

The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2007-04, Vol.45 (4), p.952-954
1. Verfasser: Zebbiche, Toufik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 954
container_issue 4
container_start_page 952
container_title AIAA journal
container_volume 45
creator Zebbiche, Toufik
description The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.24868
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18673284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29063468</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4p_oUiHvCiM6c2KV7J2FSYKDjBu5DmoB1dO5MU3L83swNBvQpJnrxfeAE4RnCEM0Sv0AhTnvMdMEAZISnh2esuGEAIUYpohvfBgfeLuMOMowG4fg7yrZGhaptkbpYr42TonEkm1hoVknga3k3y5GSjQ508mLVxybRr1ObBIdizsvbmaLsOwct0Mh_fpbPH2_vxzSyVhOUhLVlWqkKzXFtcaG0IKTnkllJtDVRUZ5SXeU4ZLrhBnJSwULRECkFEpdZWkyE473NXrv3ojA9iWXll6lo2pu28wAXMCc15hCe_4KLtXBP_JvCmDMwgi-iiR8q13jtjxcpVS-nWAkGxaVAg8d1glGfbOOmVrG0sQVX-h_OcEcxpdKe9k5WUPyP_xl3-y_prsdJW2K6ug_kM5AvY8IhX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215332707</pqid></control><display><type>article</type><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><source>Alma/SFX Local Collection</source><creator>Zebbiche, Toufik</creator><creatorcontrib>Zebbiche, Toufik</creatorcontrib><description>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.24868</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Air flow ; Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Shock-wave interactions and shock effects ; Temperature ; Temperature effects ; Turbulent flow</subject><ispartof>AIAA journal, 2007-04, Vol.45 (4), p.952-954</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Apr 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</citedby><cites>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18673284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zebbiche, Toufik</creatorcontrib><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><title>AIAA journal</title><description>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4p_oUiHvCiM6c2KV7J2FSYKDjBu5DmoB1dO5MU3L83swNBvQpJnrxfeAE4RnCEM0Sv0AhTnvMdMEAZISnh2esuGEAIUYpohvfBgfeLuMOMowG4fg7yrZGhaptkbpYr42TonEkm1hoVknga3k3y5GSjQ508mLVxybRr1ObBIdizsvbmaLsOwct0Mh_fpbPH2_vxzSyVhOUhLVlWqkKzXFtcaG0IKTnkllJtDVRUZ5SXeU4ZLrhBnJSwULRECkFEpdZWkyE473NXrv3ojA9iWXll6lo2pu28wAXMCc15hCe_4KLtXBP_JvCmDMwgi-iiR8q13jtjxcpVS-nWAkGxaVAg8d1glGfbOOmVrG0sQVX-h_OcEcxpdKe9k5WUPyP_xl3-y_prsdJW2K6ug_kM5AvY8IhX</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Zebbiche, Toufik</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070401</creationdate><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><author>Zebbiche, Toufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zebbiche, Toufik</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zebbiche, Toufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stagnation Temperature Effect on the Prandtl Meyer Function</atitle><jtitle>AIAA journal</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>45</volume><issue>4</issue><spage>952</spage><epage>954</epage><pages>952-954</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.24868</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2007-04, Vol.45 (4), p.952-954
issn 0001-1452
1533-385X
language eng
recordid cdi_pascalfrancis_primary_18673284
source Alma/SFX Local Collection
subjects Aerodynamics
Air flow
Compressible flows
shock and detonation phenomena
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Shock-wave interactions and shock effects
Temperature
Temperature effects
Turbulent flow
title Stagnation Temperature Effect on the Prandtl Meyer Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stagnation%20Temperature%20Effect%20on%20the%20Prandtl%20Meyer%20Function&rft.jtitle=AIAA%20journal&rft.au=Zebbiche,%20Toufik&rft.date=2007-04-01&rft.volume=45&rft.issue=4&rft.spage=952&rft.epage=954&rft.pages=952-954&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.24868&rft_dat=%3Cproquest_pasca%3E29063468%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215332707&rft_id=info:pmid/&rfr_iscdi=true