Stagnation Temperature Effect on the Prandtl Meyer Function
The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach nu...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2007-04, Vol.45 (4), p.952-954 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 954 |
---|---|
container_issue | 4 |
container_start_page | 952 |
container_title | AIAA journal |
container_volume | 45 |
creator | Zebbiche, Toufik |
description | The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.24868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18673284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29063468</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</originalsourceid><addsrcrecordid>eNpt0FtLwzAYBuAgCs4p_oUiHvCiM6c2KV7J2FSYKDjBu5DmoB1dO5MU3L83swNBvQpJnrxfeAE4RnCEM0Sv0AhTnvMdMEAZISnh2esuGEAIUYpohvfBgfeLuMOMowG4fg7yrZGhaptkbpYr42TonEkm1hoVknga3k3y5GSjQ508mLVxybRr1ObBIdizsvbmaLsOwct0Mh_fpbPH2_vxzSyVhOUhLVlWqkKzXFtcaG0IKTnkllJtDVRUZ5SXeU4ZLrhBnJSwULRECkFEpdZWkyE473NXrv3ojA9iWXll6lo2pu28wAXMCc15hCe_4KLtXBP_JvCmDMwgi-iiR8q13jtjxcpVS-nWAkGxaVAg8d1glGfbOOmVrG0sQVX-h_OcEcxpdKe9k5WUPyP_xl3-y_prsdJW2K6ug_kM5AvY8IhX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215332707</pqid></control><display><type>article</type><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><source>Alma/SFX Local Collection</source><creator>Zebbiche, Toufik</creator><creatorcontrib>Zebbiche, Toufik</creatorcontrib><description>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.24868</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Air flow ; Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Shock-wave interactions and shock effects ; Temperature ; Temperature effects ; Turbulent flow</subject><ispartof>AIAA journal, 2007-04, Vol.45 (4), p.952-954</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Apr 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</citedby><cites>FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18673284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zebbiche, Toufik</creatorcontrib><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><title>AIAA journal</title><description>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Turbulent flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAYBuAgCs4p_oUiHvCiM6c2KV7J2FSYKDjBu5DmoB1dO5MU3L83swNBvQpJnrxfeAE4RnCEM0Sv0AhTnvMdMEAZISnh2esuGEAIUYpohvfBgfeLuMOMowG4fg7yrZGhaptkbpYr42TonEkm1hoVknga3k3y5GSjQ508mLVxybRr1ObBIdizsvbmaLsOwct0Mh_fpbPH2_vxzSyVhOUhLVlWqkKzXFtcaG0IKTnkllJtDVRUZ5SXeU4ZLrhBnJSwULRECkFEpdZWkyE473NXrv3ojA9iWXll6lo2pu28wAXMCc15hCe_4KLtXBP_JvCmDMwgi-iiR8q13jtjxcpVS-nWAkGxaVAg8d1glGfbOOmVrG0sQVX-h_OcEcxpdKe9k5WUPyP_xl3-y_prsdJW2K6ug_kM5AvY8IhX</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Zebbiche, Toufik</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070401</creationdate><title>Stagnation Temperature Effect on the Prandtl Meyer Function</title><author>Zebbiche, Toufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b75bc9d76df29dde33b808f44dfe0c4d548b6647298e183b09c4b1c1014addfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zebbiche, Toufik</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zebbiche, Toufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stagnation Temperature Effect on the Prandtl Meyer Function</atitle><jtitle>AIAA journal</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>45</volume><issue>4</issue><spage>952</spage><epage>954</epage><pages>952-954</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The Prandtl Meyer (PM) function plays a significant role in the supersonic flows calculation. To design a supersonic nozzle giving a uniform and parallel flow at the exit section [1-3], it is necessary to deviate the nozzle at the throat of an initial expansion angle to have the desired exit Mach number. Zebbiche features the new Prandtl Meyer function form, presented by integration of a complex analytical function, where the analytical calculation procedure is impossible. The interest then is oriented to the determination of the approximate numerical solutions. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.24868</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2007-04, Vol.45 (4), p.952-954 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_pascalfrancis_primary_18673284 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Air flow Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Shock-wave interactions and shock effects Temperature Temperature effects Turbulent flow |
title | Stagnation Temperature Effect on the Prandtl Meyer Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stagnation%20Temperature%20Effect%20on%20the%20Prandtl%20Meyer%20Function&rft.jtitle=AIAA%20journal&rft.au=Zebbiche,%20Toufik&rft.date=2007-04-01&rft.volume=45&rft.issue=4&rft.spage=952&rft.epage=954&rft.pages=952-954&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.24868&rft_dat=%3Cproquest_pasca%3E29063468%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215332707&rft_id=info:pmid/&rfr_iscdi=true |