Postnikov Pieces and Bℤ/p-Homotopy Theory

We present a constructive method to compute the cellularization with respect to $B^{m}ℤ/p$ for any integer m ≥ 1 of a large class of H-spaces, namely all those which have a finite number of non-trivial $B^{m}ℤ/p$ -homotopy groups (the pointed mapping space $\text{map}_{\ast}(B^{m}ℤ/p,X)$ is a Postni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2007-03, Vol.359 (3), p.1099-1113
Hauptverfasser: Castellana, Natàlia, Crespo, Juan A., Scherer, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a constructive method to compute the cellularization with respect to $B^{m}ℤ/p$ for any integer m ≥ 1 of a large class of H-spaces, namely all those which have a finite number of non-trivial $B^{m}ℤ/p$ -homotopy groups (the pointed mapping space $\text{map}_{\ast}(B^{m}ℤ/p,X)$ is a Postnikov piece). We prove in particular that the $B^{m}ℤ/p$ -cellularization of an H-space having a finite number of $B^{m}ℤ/p$ -homotopy groups is a p-torsion Postnikov piece. Along the way, we characterize the $Bℤ/p^{r}$ -cellular classifying spaces of nilpotent groups.
ISSN:0002-9947
1088-6850
DOI:10.1090/S0002-9947-06-03957-2