Postnikov Pieces and Bℤ/p-Homotopy Theory
We present a constructive method to compute the cellularization with respect to $B^{m}ℤ/p$ for any integer m ≥ 1 of a large class of H-spaces, namely all those which have a finite number of non-trivial $B^{m}ℤ/p$ -homotopy groups (the pointed mapping space $\text{map}_{\ast}(B^{m}ℤ/p,X)$ is a Postni...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2007-03, Vol.359 (3), p.1099-1113 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a constructive method to compute the cellularization with respect to $B^{m}ℤ/p$ for any integer m ≥ 1 of a large class of H-spaces, namely all those which have a finite number of non-trivial $B^{m}ℤ/p$ -homotopy groups (the pointed mapping space $\text{map}_{\ast}(B^{m}ℤ/p,X)$ is a Postnikov piece). We prove in particular that the $B^{m}ℤ/p$ -cellularization of an H-space having a finite number of $B^{m}ℤ/p$ -homotopy groups is a p-torsion Postnikov piece. Along the way, we characterize the $Bℤ/p^{r}$ -cellular classifying spaces of nilpotent groups. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/S0002-9947-06-03957-2 |