Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching

We outlined the epitaxial design methodology for a novel compound-semiconductor-based optically controlled power device for fast repetitive switching frequency. The proposed structure features gallium arsenide (GaAs/AlGaAs) lateral heterostructure with charge-balancing superjunction layers to make t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2007-03, Vol.54 (3), p.589-600
Hauptverfasser: Sarkar, T., Mazumder, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 3
container_start_page 589
container_title IEEE transactions on electron devices
container_volume 54
creator Sarkar, T.
Mazumder, S.K.
description We outlined the epitaxial design methodology for a novel compound-semiconductor-based optically controlled power device for fast repetitive switching frequency. The proposed structure features gallium arsenide (GaAs/AlGaAs) lateral heterostructure with charge-balancing superjunction layers to make the breakdown voltage of the device independent of doping of the photo-absorbing GaAs active layer and linearly dependent on the lateral length. This structure also features parallel plate like p-n junction, which reduces local electric-field crowding and supports higher reverse bias during off-state. We show that the use of lattice-matched wider bandgap AlGaAs helps to achieve superjunction charge balancing without having any effect on switching performance of the device. We also show that the particular processing methodology (ion implantation over zinc diffusion) helps in improving the breakdown-voltage capability of the device
doi_str_mv 10.1109/TED.2006.890231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18554936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4114857</ieee_id><sourcerecordid>875089389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9b647619849e3afee50f3abb2e853a546498a2ccb2d6b03720a8be3d80fb25ea3</originalsourceid><addsrcrecordid>eNpdkU9rGzEQxZfSQN2k5x56EYWS09rS6s9KR9d2koIhIUnPy6w8m8psVltJmzTfox-4Mg4t9DTMzG-exHtF8ZHROWPULO4363lFqZprQyvO3hQzJmVdGiXU22JGKdOl4Zq_K97HuM-tEqKaFb83o0vwy0FP1hjdw0B8R4CsXUCbyPWYnIW-fyErP6Tg-x535BKWcbHsD6X8CjFPrjBh8DGFyaYpINlC7rPi3TRi2E-DTc4P5MY_Y8ivPDmLpPOBXEBM5BZHTC65JyR3zy7ZH254OCtOOugjfnitp8X3i8396qrcXl9-Wy23peWSptK0StSKGS0McugQJe04tG2FWnKQQgmjobK2rXaqpbyuKOgW-U7Trq0kAj8tzo-6Y_A_J4ypeXTRYt_DgH6Kja4l1dk0k8nP_5F7P4Uhf67RKrtaGSoztDhCNpsRA3bNGNwjhJeG0eaQUZMzag4ZNceM8sWXV1mI2ecuwGBd_HempRSGq8x9OnIOEf-uBWNCy5r_AX1am88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863832905</pqid></control><display><type>article</type><title>Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching</title><source>IEEE Electronic Library (IEL)</source><creator>Sarkar, T. ; Mazumder, S.K.</creator><creatorcontrib>Sarkar, T. ; Mazumder, S.K.</creatorcontrib><description>We outlined the epitaxial design methodology for a novel compound-semiconductor-based optically controlled power device for fast repetitive switching frequency. The proposed structure features gallium arsenide (GaAs/AlGaAs) lateral heterostructure with charge-balancing superjunction layers to make the breakdown voltage of the device independent of doping of the photo-absorbing GaAs active layer and linearly dependent on the lateral length. This structure also features parallel plate like p-n junction, which reduces local electric-field crowding and supports higher reverse bias during off-state. We show that the use of lattice-matched wider bandgap AlGaAs helps to achieve superjunction charge balancing without having any effect on switching performance of the device. We also show that the particular processing methodology (ion implantation over zinc diffusion) helps in improving the breakdown-voltage capability of the device</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2006.890231</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum gallium arsenides ; Applied sciences ; Compound structure devices ; Devices ; Electric power generation ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Epitaxial growth ; Exact sciences and technology ; Gallium arsenide ; gallium arsenide (GaAs) ; Gallium arsenides ; heterostructure ; Heterostructures ; Methodology ; optically triggered power transistor (OTPT) ; Other multijunction devices. Power transistors. Thyristors ; Power electronics, power supplies ; power semiconductor ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; superjunction ; Switching</subject><ispartof>IEEE transactions on electron devices, 2007-03, Vol.54 (3), p.589-600</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9b647619849e3afee50f3abb2e853a546498a2ccb2d6b03720a8be3d80fb25ea3</citedby><cites>FETCH-LOGICAL-c350t-9b647619849e3afee50f3abb2e853a546498a2ccb2d6b03720a8be3d80fb25ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4114857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4114857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18554936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, T.</creatorcontrib><creatorcontrib>Mazumder, S.K.</creatorcontrib><title>Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We outlined the epitaxial design methodology for a novel compound-semiconductor-based optically controlled power device for fast repetitive switching frequency. The proposed structure features gallium arsenide (GaAs/AlGaAs) lateral heterostructure with charge-balancing superjunction layers to make the breakdown voltage of the device independent of doping of the photo-absorbing GaAs active layer and linearly dependent on the lateral length. This structure also features parallel plate like p-n junction, which reduces local electric-field crowding and supports higher reverse bias during off-state. We show that the use of lattice-matched wider bandgap AlGaAs helps to achieve superjunction charge balancing without having any effect on switching performance of the device. We also show that the particular processing methodology (ion implantation over zinc diffusion) helps in improving the breakdown-voltage capability of the device</description><subject>Aluminum gallium arsenides</subject><subject>Applied sciences</subject><subject>Compound structure devices</subject><subject>Devices</subject><subject>Electric power generation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Epitaxial growth</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>gallium arsenide (GaAs)</subject><subject>Gallium arsenides</subject><subject>heterostructure</subject><subject>Heterostructures</subject><subject>Methodology</subject><subject>optically triggered power transistor (OTPT)</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Power electronics, power supplies</subject><subject>power semiconductor</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>superjunction</subject><subject>Switching</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9rGzEQxZfSQN2k5x56EYWS09rS6s9KR9d2koIhIUnPy6w8m8psVltJmzTfox-4Mg4t9DTMzG-exHtF8ZHROWPULO4363lFqZprQyvO3hQzJmVdGiXU22JGKdOl4Zq_K97HuM-tEqKaFb83o0vwy0FP1hjdw0B8R4CsXUCbyPWYnIW-fyErP6Tg-x535BKWcbHsD6X8CjFPrjBh8DGFyaYpINlC7rPi3TRi2E-DTc4P5MY_Y8ivPDmLpPOBXEBM5BZHTC65JyR3zy7ZH254OCtOOugjfnitp8X3i8396qrcXl9-Wy23peWSptK0StSKGS0McugQJe04tG2FWnKQQgmjobK2rXaqpbyuKOgW-U7Trq0kAj8tzo-6Y_A_J4ypeXTRYt_DgH6Kja4l1dk0k8nP_5F7P4Uhf67RKrtaGSoztDhCNpsRA3bNGNwjhJeG0eaQUZMzag4ZNceM8sWXV1mI2ecuwGBd_HempRSGq8x9OnIOEf-uBWNCy5r_AX1am88</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Sarkar, T.</creator><creator>Mazumder, S.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070301</creationdate><title>Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching</title><author>Sarkar, T. ; Mazumder, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9b647619849e3afee50f3abb2e853a546498a2ccb2d6b03720a8be3d80fb25ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum gallium arsenides</topic><topic>Applied sciences</topic><topic>Compound structure devices</topic><topic>Devices</topic><topic>Electric power generation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Epitaxial growth</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>gallium arsenide (GaAs)</topic><topic>Gallium arsenides</topic><topic>heterostructure</topic><topic>Heterostructures</topic><topic>Methodology</topic><topic>optically triggered power transistor (OTPT)</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Power electronics, power supplies</topic><topic>power semiconductor</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>superjunction</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, T.</creatorcontrib><creatorcontrib>Mazumder, S.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarkar, T.</au><au>Mazumder, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>54</volume><issue>3</issue><spage>589</spage><epage>600</epage><pages>589-600</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We outlined the epitaxial design methodology for a novel compound-semiconductor-based optically controlled power device for fast repetitive switching frequency. The proposed structure features gallium arsenide (GaAs/AlGaAs) lateral heterostructure with charge-balancing superjunction layers to make the breakdown voltage of the device independent of doping of the photo-absorbing GaAs active layer and linearly dependent on the lateral length. This structure also features parallel plate like p-n junction, which reduces local electric-field crowding and supports higher reverse bias during off-state. We show that the use of lattice-matched wider bandgap AlGaAs helps to achieve superjunction charge balancing without having any effect on switching performance of the device. We also show that the particular processing methodology (ion implantation over zinc diffusion) helps in improving the breakdown-voltage capability of the device</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2006.890231</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2007-03, Vol.54 (3), p.589-600
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_18554936
source IEEE Electronic Library (IEL)
subjects Aluminum gallium arsenides
Applied sciences
Compound structure devices
Devices
Electric power generation
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Epitaxial growth
Exact sciences and technology
Gallium arsenide
gallium arsenide (GaAs)
Gallium arsenides
heterostructure
Heterostructures
Methodology
optically triggered power transistor (OTPT)
Other multijunction devices. Power transistors. Thyristors
Power electronics, power supplies
power semiconductor
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
superjunction
Switching
title Epitaxial Design of a Direct Optically Controlled GaAs/AlGaAs-Based Heterostructure Lateral Superjunction Power Device for Fast Repetitive Switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Design%20of%20a%20Direct%20Optically%20Controlled%20GaAs/AlGaAs-Based%20Heterostructure%20Lateral%20Superjunction%20Power%20Device%20for%20Fast%20Repetitive%20Switching&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sarkar,%20T.&rft.date=2007-03-01&rft.volume=54&rft.issue=3&rft.spage=589&rft.epage=600&rft.pages=589-600&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2006.890231&rft_dat=%3Cproquest_RIE%3E875089389%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863832905&rft_id=info:pmid/&rft_ieee_id=4114857&rfr_iscdi=true