Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems

The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2007-02, Vol.52 (2), p.229-241
1. Verfasser: Katz, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 229
container_title IEEE transactions on automatic control
container_volume 52
creator Katz, R.D.
description The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical systems over rings, it appears capable of providing solutions to many control problems like in the cases of linear systems over fields or rings. Sufficient conditions are given for computing the maximal (A,B)-invariant subspace contained in a given space and the existence of linear state feedbacks is discussed. An application to the study of transportation networks which evolve according to a timetable is considered
doi_str_mv 10.1109/TAC.2006.890478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18535772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4099499</ieee_id><sourcerecordid>1671308138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-921348ebbe036b78eeb7a0911120b3d9b894fafff4f1def289b7db0ab868bdc73</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYMouH6cPXgpgqJg16RJm8lxXb8WVxRczyFpJ1DptmvSFf3vzbKi4MHTMMxv3rzhEXLA6JAxqi5mo_Ewo7QYgqJCwgYZsDyHNMszvkkGlDJIVQbFNtkJ4TW2hRBsQO4fzEf61CxDcjo6vzxLJ-278bVp--R5YUoMiWmrZNy1ve-apHPJrJ5jlVzVofTYY3r9jiv0M_Q4D3tky5km4P533SUvN9ez8V06fbydjEfTtBQZ76MLxgWgtUh5YSUgWmmoYoxl1PJKWVDCGeeccKxCl4GysrLUWCjAVqXku-Rkrbvw3dsSQ6_n0Q82jWmxWwbNRR6_zVkET_8FWSEZp8A4RPToD_raLX0b39BQCJBAi9XhizVU-i4Ej04vfD03_lMzqlch6BiCXoWg1yHEjeNvWRNK0zhv2rIOv2uQ81zKLHKHa65GxJ-xoEoJpfgXfGSNfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864878067</pqid></control><display><type>article</type><title>Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Katz, R.D.</creator><creatorcontrib>Katz, R.D.</creatorcontrib><description>The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical systems over rings, it appears capable of providing solutions to many control problems like in the cases of linear systems over fields or rings. Sufficient conditions are given for computing the maximal (A,B)-invariant subspace contained in a given space and the existence of linear state feedbacks is discussed. An application to the study of transportation networks which evolve according to a timetable is considered</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2006.890478</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Discrete event systems ; Discrete-event systems (DESs) ; Dynamical systems ; Exact sciences and technology ; geometric control ; invariant spaces ; Invariants ; Linear systems ; Mathematical model ; max-plus algebra ; Solid modeling ; State feedback ; Subspaces ; Sufficient conditions ; Timetables ; Transportation</subject><ispartof>IEEE transactions on automatic control, 2007-02, Vol.52 (2), p.229-241</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-921348ebbe036b78eeb7a0911120b3d9b894fafff4f1def289b7db0ab868bdc73</citedby><cites>FETCH-LOGICAL-c423t-921348ebbe036b78eeb7a0911120b3d9b894fafff4f1def289b7db0ab868bdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4099499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4099499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18535772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, R.D.</creatorcontrib><title>Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical systems over rings, it appears capable of providing solutions to many control problems like in the cases of linear systems over fields or rings. Sufficient conditions are given for computing the maximal (A,B)-invariant subspace contained in a given space and the existence of linear state feedbacks is discussed. An application to the study of transportation networks which evolve according to a timetable is considered</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Discrete event systems</subject><subject>Discrete-event systems (DESs)</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>geometric control</subject><subject>invariant spaces</subject><subject>Invariants</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>max-plus algebra</subject><subject>Solid modeling</subject><subject>State feedback</subject><subject>Subspaces</subject><subject>Sufficient conditions</subject><subject>Timetables</subject><subject>Transportation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LxDAQxYMouH6cPXgpgqJg16RJm8lxXb8WVxRczyFpJ1DptmvSFf3vzbKi4MHTMMxv3rzhEXLA6JAxqi5mo_Ewo7QYgqJCwgYZsDyHNMszvkkGlDJIVQbFNtkJ4TW2hRBsQO4fzEf61CxDcjo6vzxLJ-278bVp--R5YUoMiWmrZNy1ve-apHPJrJ5jlVzVofTYY3r9jiv0M_Q4D3tky5km4P533SUvN9ez8V06fbydjEfTtBQZ76MLxgWgtUh5YSUgWmmoYoxl1PJKWVDCGeeccKxCl4GysrLUWCjAVqXku-Rkrbvw3dsSQ6_n0Q82jWmxWwbNRR6_zVkET_8FWSEZp8A4RPToD_raLX0b39BQCJBAi9XhizVU-i4Ej04vfD03_lMzqlch6BiCXoWg1yHEjeNvWRNK0zhv2rIOv2uQ81zKLHKHa65GxJ-xoEoJpfgXfGSNfQ</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Katz, R.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20070201</creationdate><title>Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems</title><author>Katz, R.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-921348ebbe036b78eeb7a0911120b3d9b894fafff4f1def289b7db0ab868bdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Discrete event systems</topic><topic>Discrete-event systems (DESs)</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>geometric control</topic><topic>invariant spaces</topic><topic>Invariants</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>max-plus algebra</topic><topic>Solid modeling</topic><topic>State feedback</topic><topic>Subspaces</topic><topic>Sufficient conditions</topic><topic>Timetables</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, R.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katz, R.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2007-02-01</date><risdate>2007</risdate><volume>52</volume><issue>2</issue><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The concept of (A,B)-invariant subspace (or controlled invariant) of a linear dynamical system is extended to linear systems over the max-plus semiring. Although this extension presents several difficulties, which are similar to those encountered in the same kind of extension to linear dynamical systems over rings, it appears capable of providing solutions to many control problems like in the cases of linear systems over fields or rings. Sufficient conditions are given for computing the maximal (A,B)-invariant subspace contained in a given space and the existence of linear state feedbacks is discussed. An application to the study of transportation networks which evolve according to a timetable is considered</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2006.890478</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2007-02, Vol.52 (2), p.229-241
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_18535772
source IEEE Electronic Library (IEL)
subjects Algebra
Applied sciences
Automatic control
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Discrete event systems
Discrete-event systems (DESs)
Dynamical systems
Exact sciences and technology
geometric control
invariant spaces
Invariants
Linear systems
Mathematical model
max-plus algebra
Solid modeling
State feedback
Subspaces
Sufficient conditions
Timetables
Transportation
title Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Max-Plus%20(A,B)-Invariant%20Spaces%20and%20Control%20of%20Timed%20Discrete-Event%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Katz,%20R.D.&rft.date=2007-02-01&rft.volume=52&rft.issue=2&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2006.890478&rft_dat=%3Cproquest_RIE%3E1671308138%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864878067&rft_id=info:pmid/&rft_ieee_id=4099499&rfr_iscdi=true