Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems

This paper introduces a new family of low-power and high-performance flip-flops, namely conditional data mapping flip-flops (CDMFFs), which reduce their dynamic power by mapping their inputs to a configuration that eliminates redundant internal transitions. We present two CDMFFs, having differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2006-12, Vol.14 (12), p.1379-1383
Hauptverfasser: Chen Kong Teh, Hamada, M., Fujita, T., Hara, H., Ikumi, N., Oowaki, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1383
container_issue 12
container_start_page 1379
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 14
creator Chen Kong Teh
Hamada, M.
Fujita, T.
Hara, H.
Ikumi, N.
Oowaki, Y.
description This paper introduces a new family of low-power and high-performance flip-flops, namely conditional data mapping flip-flops (CDMFFs), which reduce their dynamic power by mapping their inputs to a configuration that eliminates redundant internal transitions. We present two CDMFFs, having differential and single-ended structures, respectively, and compare them to the state-of-the-art flip-flops. The results indicate that both CDMFFs have the best power-delay product in their groups, respectively. In the aspect of power dissipation, the single-ended and differential CDMFFs consume the least power at data activity less than 50%, and are 31% and 26% less power than the conditional capture flip-flops at 25% data activity, respectively. In the aspect of performance, CDMFFs achieve small data-to-output delays, comparable to those of the transmission-gate pulsed latch and the modified-sense-amplifier flip-flop. In the aspect of timing reliability, CDMFFs have the best internal race immunity among pulse-triggered flip-flops. A post-layout case study is demonstrated with comparison to a transmission-gate flip-flop. The results indicate the single-ended CDMFF has 34% less in data-to-output delay and 28% less in power at 25% data activity, in spite of the 34% increase in size
doi_str_mv 10.1109/TVLSI.2006.887833
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18458385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4052355</ieee_id><sourcerecordid>2544202041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-bdc9910c5c73737d0be01da3338bf02ec385c93cabb34cf9efcd1dc3359259753</originalsourceid><addsrcrecordid>eNpdkFFLwzAQgIsoOKc_QHwpgvjUeWmaNXmU6dyg6mDT15Cm6Yy0TU06xv69mR0K3j3cwX13cF8QXCIYIQTsbvWeLeejGGA8ojSlGB8FA0RIGjEfx76HMY5ojOA0OHPuEwAlCYNB8DIxTaE7bRpRhQ-iE-GzaFvdrMNppdtoWpnWhaWxYWa20cJslQ1FU4Qzvf6IFsr6SS0aqcLlznWqdufBSSkqpy4OdRi8TR9Xk1mUvT7NJ_dZJDFJuigvJGMIJJEp9llArgAVAmNM8xJiJTElkmEp8hwnsmSqlAUqJMaExYSlBA-D2_5ua83XRrmO19pJVVWiUWbjOKUsQYDGiSev_5GfZmP9t44zFHsLkO4h1EPSGuesKnlrdS3sjiPge7_8xy_f--W9X79zczgsnBRVab0H7f4WaUKof8NzVz2nlVK_4wRIjAnB3y38gww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912144074</pqid></control><display><type>article</type><title>Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chen Kong Teh ; Hamada, M. ; Fujita, T. ; Hara, H. ; Ikumi, N. ; Oowaki, Y.</creator><creatorcontrib>Chen Kong Teh ; Hamada, M. ; Fujita, T. ; Hara, H. ; Ikumi, N. ; Oowaki, Y.</creatorcontrib><description>This paper introduces a new family of low-power and high-performance flip-flops, namely conditional data mapping flip-flops (CDMFFs), which reduce their dynamic power by mapping their inputs to a configuration that eliminates redundant internal transitions. We present two CDMFFs, having differential and single-ended structures, respectively, and compare them to the state-of-the-art flip-flops. The results indicate that both CDMFFs have the best power-delay product in their groups, respectively. In the aspect of power dissipation, the single-ended and differential CDMFFs consume the least power at data activity less than 50%, and are 31% and 26% less power than the conditional capture flip-flops at 25% data activity, respectively. In the aspect of performance, CDMFFs achieve small data-to-output delays, comparable to those of the transmission-gate pulsed latch and the modified-sense-amplifier flip-flop. In the aspect of timing reliability, CDMFFs have the best internal race immunity among pulse-triggered flip-flops. A post-layout case study is demonstrated with comparison to a transmission-gate flip-flop. The results indicate the single-ended CDMFF has 34% less in data-to-output delay and 28% less in power at 25% data activity, in spite of the 34% increase in size</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2006.887833</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Circuit properties ; Clocks ; CMOS digital integrated circuits ; Consumption ; Delay ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Digital integrated circuits ; Dynamical systems ; Dynamics ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Flip-flops ; High speed integrated circuits ; Integrated circuits ; Latches ; low-power integrated circuits ; Mapping ; MOS devices ; Power dissipation ; Research and development ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; System-on-a-chip ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2006-12, Vol.14 (12), p.1379-1383</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-bdc9910c5c73737d0be01da3338bf02ec385c93cabb34cf9efcd1dc3359259753</citedby><cites>FETCH-LOGICAL-c354t-bdc9910c5c73737d0be01da3338bf02ec385c93cabb34cf9efcd1dc3359259753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4052355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4052355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18458385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen Kong Teh</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Hara, H.</creatorcontrib><creatorcontrib>Ikumi, N.</creatorcontrib><creatorcontrib>Oowaki, Y.</creatorcontrib><title>Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>This paper introduces a new family of low-power and high-performance flip-flops, namely conditional data mapping flip-flops (CDMFFs), which reduce their dynamic power by mapping their inputs to a configuration that eliminates redundant internal transitions. We present two CDMFFs, having differential and single-ended structures, respectively, and compare them to the state-of-the-art flip-flops. The results indicate that both CDMFFs have the best power-delay product in their groups, respectively. In the aspect of power dissipation, the single-ended and differential CDMFFs consume the least power at data activity less than 50%, and are 31% and 26% less power than the conditional capture flip-flops at 25% data activity, respectively. In the aspect of performance, CDMFFs achieve small data-to-output delays, comparable to those of the transmission-gate pulsed latch and the modified-sense-amplifier flip-flop. In the aspect of timing reliability, CDMFFs have the best internal race immunity among pulse-triggered flip-flops. A post-layout case study is demonstrated with comparison to a transmission-gate flip-flop. The results indicate the single-ended CDMFF has 34% less in data-to-output delay and 28% less in power at 25% data activity, in spite of the 34% increase in size</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>CMOS digital integrated circuits</subject><subject>Consumption</subject><subject>Delay</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Digital integrated circuits</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flip-flops</subject><subject>High speed integrated circuits</subject><subject>Integrated circuits</subject><subject>Latches</subject><subject>low-power integrated circuits</subject><subject>Mapping</subject><subject>MOS devices</subject><subject>Power dissipation</subject><subject>Research and development</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>System-on-a-chip</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFFLwzAQgIsoOKc_QHwpgvjUeWmaNXmU6dyg6mDT15Cm6Yy0TU06xv69mR0K3j3cwX13cF8QXCIYIQTsbvWeLeejGGA8ojSlGB8FA0RIGjEfx76HMY5ojOA0OHPuEwAlCYNB8DIxTaE7bRpRhQ-iE-GzaFvdrMNppdtoWpnWhaWxYWa20cJslQ1FU4Qzvf6IFsr6SS0aqcLlznWqdufBSSkqpy4OdRi8TR9Xk1mUvT7NJ_dZJDFJuigvJGMIJJEp9llArgAVAmNM8xJiJTElkmEp8hwnsmSqlAUqJMaExYSlBA-D2_5ua83XRrmO19pJVVWiUWbjOKUsQYDGiSev_5GfZmP9t44zFHsLkO4h1EPSGuesKnlrdS3sjiPge7_8xy_f--W9X79zczgsnBRVab0H7f4WaUKof8NzVz2nlVK_4wRIjAnB3y38gww</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Chen Kong Teh</creator><creator>Hamada, M.</creator><creator>Fujita, T.</creator><creator>Hara, H.</creator><creator>Ikumi, N.</creator><creator>Oowaki, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061201</creationdate><title>Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems</title><author>Chen Kong Teh ; Hamada, M. ; Fujita, T. ; Hara, H. ; Ikumi, N. ; Oowaki, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-bdc9910c5c73737d0be01da3338bf02ec385c93cabb34cf9efcd1dc3359259753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>CMOS digital integrated circuits</topic><topic>Consumption</topic><topic>Delay</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Digital integrated circuits</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flip-flops</topic><topic>High speed integrated circuits</topic><topic>Integrated circuits</topic><topic>Latches</topic><topic>low-power integrated circuits</topic><topic>Mapping</topic><topic>MOS devices</topic><topic>Power dissipation</topic><topic>Research and development</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>System-on-a-chip</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen Kong Teh</creatorcontrib><creatorcontrib>Hamada, M.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Hara, H.</creatorcontrib><creatorcontrib>Ikumi, N.</creatorcontrib><creatorcontrib>Oowaki, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen Kong Teh</au><au>Hamada, M.</au><au>Fujita, T.</au><au>Hara, H.</au><au>Ikumi, N.</au><au>Oowaki, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2006-12-01</date><risdate>2006</risdate><volume>14</volume><issue>12</issue><spage>1379</spage><epage>1383</epage><pages>1379-1383</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>This paper introduces a new family of low-power and high-performance flip-flops, namely conditional data mapping flip-flops (CDMFFs), which reduce their dynamic power by mapping their inputs to a configuration that eliminates redundant internal transitions. We present two CDMFFs, having differential and single-ended structures, respectively, and compare them to the state-of-the-art flip-flops. The results indicate that both CDMFFs have the best power-delay product in their groups, respectively. In the aspect of power dissipation, the single-ended and differential CDMFFs consume the least power at data activity less than 50%, and are 31% and 26% less power than the conditional capture flip-flops at 25% data activity, respectively. In the aspect of performance, CDMFFs achieve small data-to-output delays, comparable to those of the transmission-gate pulsed latch and the modified-sense-amplifier flip-flop. In the aspect of timing reliability, CDMFFs have the best internal race immunity among pulse-triggered flip-flops. A post-layout case study is demonstrated with comparison to a transmission-gate flip-flop. The results indicate the single-ended CDMFF has 34% less in data-to-output delay and 28% less in power at 25% data activity, in spite of the 34% increase in size</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2006.887833</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2006-12, Vol.14 (12), p.1379-1383
issn 1063-8210
1557-9999
language eng
recordid cdi_pascalfrancis_primary_18458385
source IEEE Electronic Library (IEL)
subjects Amplifiers
Applied sciences
Circuit properties
Clocks
CMOS digital integrated circuits
Consumption
Delay
Design. Technologies. Operation analysis. Testing
Digital circuits
Digital integrated circuits
Dynamical systems
Dynamics
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Flip-flops
High speed integrated circuits
Integrated circuits
Latches
low-power integrated circuits
Mapping
MOS devices
Power dissipation
Research and development
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
System-on-a-chip
Very large scale integration
title Conditional Data Mapping Flip-Flops for Low-Power and High-Performance Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Data%20Mapping%20Flip-Flops%20for%20Low-Power%20and%20High-Performance%20Systems&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Chen%20Kong%20Teh&rft.date=2006-12-01&rft.volume=14&rft.issue=12&rft.spage=1379&rft.epage=1383&rft.pages=1379-1383&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2006.887833&rft_dat=%3Cproquest_RIE%3E2544202041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912144074&rft_id=info:pmid/&rft_ieee_id=4052355&rfr_iscdi=true