Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells
Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammato...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2006-12, Vol.74 (12), p.6571-6580 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6580 |
---|---|
container_issue | 12 |
container_start_page | 6571 |
container_title | Infection and Immunity |
container_volume | 74 |
creator | Nakayama, Masaaki Hisatsune, Jyunzo Yamasaki, Eiki Nishi, Yoshito Wada, Akihiro Kurazono, Hisao Sap, Jan Yahiro, Kinnosuke Moss, Joel Hirayama, Toshiya |
description | Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation. |
doi_str_mv | 10.1128/IAI.00356-06 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18310860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68177095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</originalsourceid><addsrcrecordid>eNpVkcGO0zAQhiMEYsvCjTNYSHBqFjuOE-eCVFXARioCLbscuFgTd9wa0jhru0DfiRMPwjPh0moXTrbHn__xP3-WPWb0jLFCvmxn7RmlXFQ5re5kE0YbmQtRFHezCaWsyRtR1SfZgxC-pGNZlvJ-dsJqyqmQfJL9nPfbENHbYUWcIefYW-060KlExl3vvCWfQM-IHcjCjnZJLsDEMCXvcGkh4pJ0O9LGQC5Q4xidn97s8oX9iuSDdxHT48udd8EOqbB2YVxDhIDk968pafdvr7fWJy3jPGmH6H5YDdG6Yd919jkXBSNz7PvwMLtnoA_46LieZldvXl_Oz_PF-7ftfLbIdVnxmNxjgUUnpamAlqLjy0ZQjropESWHQhSNZiUTshYgTd0BE4CN2dOdwdrw0-zVQXfcdhtcahyih16N3m7A75QDq_6_Gexardw3xapG0komgRdHAe-utxii2tigkwUY0G2DqiSra9qIBE4PoE7jCR7NTRNG1T5eleJVf-NVtEr4k38_dgsf80zA8yMAQUNvPAzahltOckZlRRP37MCt7Wr9PQ1fQdgom4zVpWKFqkTNEvT0ABlwClY-CV19LCjjlLG904L_ASrrxJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68177095</pqid></control><display><type>article</type><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creator><creatorcontrib>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creatorcontrib><description>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.00356-06</identifier><identifier>PMID: 17030583</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Activating Transcription Factor 2 - agonists ; Activating Transcription Factor 2 - metabolism ; Bacterial Proteins - analysis ; Bacterial Proteins - metabolism ; Bacteriology ; beta-Cyclodextrins - pharmacology ; Biological and medical sciences ; Cells, Cultured ; Cellular Microbiology: Pathogen-Host Cell Molecular Interactions ; Fundamental and applied biological sciences. Psychology ; Humans ; Membrane Microdomains - chemistry ; Membrane Microdomains - metabolism ; Microbiology ; Miscellaneous ; Nerve Tissue Proteins - analysis ; Nerve Tissue Proteins - metabolism ; Nitrobenzoates - pharmacology ; p38 Mitogen-Activated Protein Kinases - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphatidylinositol Diacylglycerol-Lyase - pharmacology ; Phosphoinositide Phospholipase C ; Protein Transport - drug effects ; Protein Tyrosine Phosphatases - analysis ; Protein Tyrosine Phosphatases - metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 5 ; Vacuoles - chemistry ; Vacuoles - metabolism</subject><ispartof>Infection and Immunity, 2006-12, Vol.74 (12), p.6571-6580</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright © 2006, American Society for Microbiology 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</citedby><cites>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698068/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698068/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18310860$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17030583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Jyunzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Nishi, Yoshito</creatorcontrib><creatorcontrib>Wada, Akihiro</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Sap, Jan</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</description><subject>Activating Transcription Factor 2 - agonists</subject><subject>Activating Transcription Factor 2 - metabolism</subject><subject>Bacterial Proteins - analysis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Cellular Microbiology: Pathogen-Host Cell Molecular Interactions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - metabolism</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Nerve Tissue Proteins - analysis</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nitrobenzoates - pharmacology</subject><subject>p38 Mitogen-Activated Protein Kinases - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphatidylinositol Diacylglycerol-Lyase - pharmacology</subject><subject>Phosphoinositide Phospholipase C</subject><subject>Protein Transport - drug effects</subject><subject>Protein Tyrosine Phosphatases - analysis</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>Receptor-Like Protein Tyrosine Phosphatases, Class 5</subject><subject>Vacuoles - chemistry</subject><subject>Vacuoles - metabolism</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcGO0zAQhiMEYsvCjTNYSHBqFjuOE-eCVFXARioCLbscuFgTd9wa0jhru0DfiRMPwjPh0moXTrbHn__xP3-WPWb0jLFCvmxn7RmlXFQ5re5kE0YbmQtRFHezCaWsyRtR1SfZgxC-pGNZlvJ-dsJqyqmQfJL9nPfbENHbYUWcIefYW-060KlExl3vvCWfQM-IHcjCjnZJLsDEMCXvcGkh4pJ0O9LGQC5Q4xidn97s8oX9iuSDdxHT48udd8EOqbB2YVxDhIDk968pafdvr7fWJy3jPGmH6H5YDdG6Yd919jkXBSNz7PvwMLtnoA_46LieZldvXl_Oz_PF-7ftfLbIdVnxmNxjgUUnpamAlqLjy0ZQjropESWHQhSNZiUTshYgTd0BE4CN2dOdwdrw0-zVQXfcdhtcahyih16N3m7A75QDq_6_Gexardw3xapG0komgRdHAe-utxii2tigkwUY0G2DqiSra9qIBE4PoE7jCR7NTRNG1T5eleJVf-NVtEr4k38_dgsf80zA8yMAQUNvPAzahltOckZlRRP37MCt7Wr9PQ1fQdgom4zVpWKFqkTNEvT0ABlwClY-CV19LCjjlLG904L_ASrrxJY</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Nakayama, Masaaki</creator><creator>Hisatsune, Jyunzo</creator><creator>Yamasaki, Eiki</creator><creator>Nishi, Yoshito</creator><creator>Wada, Akihiro</creator><creator>Kurazono, Hisao</creator><creator>Sap, Jan</creator><creator>Yahiro, Kinnosuke</creator><creator>Moss, Joel</creator><creator>Hirayama, Toshiya</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><author>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Activating Transcription Factor 2 - agonists</topic><topic>Activating Transcription Factor 2 - metabolism</topic><topic>Bacterial Proteins - analysis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Cellular Microbiology: Pathogen-Host Cell Molecular Interactions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - metabolism</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Nerve Tissue Proteins - analysis</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nitrobenzoates - pharmacology</topic><topic>p38 Mitogen-Activated Protein Kinases - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphatidylinositol Diacylglycerol-Lyase - pharmacology</topic><topic>Phosphoinositide Phospholipase C</topic><topic>Protein Transport - drug effects</topic><topic>Protein Tyrosine Phosphatases - analysis</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>Receptor-Like Protein Tyrosine Phosphatases, Class 5</topic><topic>Vacuoles - chemistry</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Jyunzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Nishi, Yoshito</creatorcontrib><creatorcontrib>Wada, Akihiro</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Sap, Jan</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Masaaki</au><au>Hisatsune, Jyunzo</au><au>Yamasaki, Eiki</au><au>Nishi, Yoshito</au><au>Wada, Akihiro</au><au>Kurazono, Hisao</au><au>Sap, Jan</au><au>Yahiro, Kinnosuke</au><au>Moss, Joel</au><au>Hirayama, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>74</volume><issue>12</issue><spage>6571</spage><epage>6580</epage><pages>6571-6580</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>17030583</pmid><doi>10.1128/IAI.00356-06</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-9567 |
ispartof | Infection and Immunity, 2006-12, Vol.74 (12), p.6571-6580 |
issn | 0019-9567 1098-5522 |
language | eng |
recordid | cdi_pascalfrancis_primary_18310860 |
source | MEDLINE; American Society for Microbiology Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Activating Transcription Factor 2 - agonists Activating Transcription Factor 2 - metabolism Bacterial Proteins - analysis Bacterial Proteins - metabolism Bacteriology beta-Cyclodextrins - pharmacology Biological and medical sciences Cells, Cultured Cellular Microbiology: Pathogen-Host Cell Molecular Interactions Fundamental and applied biological sciences. Psychology Humans Membrane Microdomains - chemistry Membrane Microdomains - metabolism Microbiology Miscellaneous Nerve Tissue Proteins - analysis Nerve Tissue Proteins - metabolism Nitrobenzoates - pharmacology p38 Mitogen-Activated Protein Kinases - drug effects p38 Mitogen-Activated Protein Kinases - metabolism Phosphatidylinositol Diacylglycerol-Lyase - pharmacology Phosphoinositide Phospholipase C Protein Transport - drug effects Protein Tyrosine Phosphatases - analysis Protein Tyrosine Phosphatases - metabolism Receptor-Like Protein Tyrosine Phosphatases, Class 5 Vacuoles - chemistry Vacuoles - metabolism |
title | Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20Helicobacter%20pylori%20VacA%20in%20Lipid%20Rafts,%20Mediated%20by%20Its%20Receptor,%20Receptor-Like%20Protein%20Tyrosine%20Phosphatase%20%CE%B2,%20Is%20Required%20for%20Intoxication%20in%20AZ-521%20Cells&rft.jtitle=Infection%20and%20Immunity&rft.au=Nakayama,%20Masaaki&rft.date=2006-12-01&rft.volume=74&rft.issue=12&rft.spage=6571&rft.epage=6580&rft.pages=6571-6580&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.00356-06&rft_dat=%3Cproquest_pasca%3E68177095%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68177095&rft_id=info:pmid/17030583&rfr_iscdi=true |