Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells

Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 2006-12, Vol.74 (12), p.6571-6580
Hauptverfasser: Nakayama, Masaaki, Hisatsune, Jyunzo, Yamasaki, Eiki, Nishi, Yoshito, Wada, Akihiro, Kurazono, Hisao, Sap, Jan, Yahiro, Kinnosuke, Moss, Joel, Hirayama, Toshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6580
container_issue 12
container_start_page 6571
container_title Infection and Immunity
container_volume 74
creator Nakayama, Masaaki
Hisatsune, Jyunzo
Yamasaki, Eiki
Nishi, Yoshito
Wada, Akihiro
Kurazono, Hisao
Sap, Jan
Yahiro, Kinnosuke
Moss, Joel
Hirayama, Toshiya
description Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.
doi_str_mv 10.1128/IAI.00356-06
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18310860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68177095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</originalsourceid><addsrcrecordid>eNpVkcGO0zAQhiMEYsvCjTNYSHBqFjuOE-eCVFXARioCLbscuFgTd9wa0jhru0DfiRMPwjPh0moXTrbHn__xP3-WPWb0jLFCvmxn7RmlXFQ5re5kE0YbmQtRFHezCaWsyRtR1SfZgxC-pGNZlvJ-dsJqyqmQfJL9nPfbENHbYUWcIefYW-060KlExl3vvCWfQM-IHcjCjnZJLsDEMCXvcGkh4pJ0O9LGQC5Q4xidn97s8oX9iuSDdxHT48udd8EOqbB2YVxDhIDk968pafdvr7fWJy3jPGmH6H5YDdG6Yd919jkXBSNz7PvwMLtnoA_46LieZldvXl_Oz_PF-7ftfLbIdVnxmNxjgUUnpamAlqLjy0ZQjropESWHQhSNZiUTshYgTd0BE4CN2dOdwdrw0-zVQXfcdhtcahyih16N3m7A75QDq_6_Gexardw3xapG0komgRdHAe-utxii2tigkwUY0G2DqiSra9qIBE4PoE7jCR7NTRNG1T5eleJVf-NVtEr4k38_dgsf80zA8yMAQUNvPAzahltOckZlRRP37MCt7Wr9PQ1fQdgom4zVpWKFqkTNEvT0ABlwClY-CV19LCjjlLG904L_ASrrxJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68177095</pqid></control><display><type>article</type><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creator><creatorcontrib>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creatorcontrib><description>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.00356-06</identifier><identifier>PMID: 17030583</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Activating Transcription Factor 2 - agonists ; Activating Transcription Factor 2 - metabolism ; Bacterial Proteins - analysis ; Bacterial Proteins - metabolism ; Bacteriology ; beta-Cyclodextrins - pharmacology ; Biological and medical sciences ; Cells, Cultured ; Cellular Microbiology: Pathogen-Host Cell Molecular Interactions ; Fundamental and applied biological sciences. Psychology ; Humans ; Membrane Microdomains - chemistry ; Membrane Microdomains - metabolism ; Microbiology ; Miscellaneous ; Nerve Tissue Proteins - analysis ; Nerve Tissue Proteins - metabolism ; Nitrobenzoates - pharmacology ; p38 Mitogen-Activated Protein Kinases - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphatidylinositol Diacylglycerol-Lyase - pharmacology ; Phosphoinositide Phospholipase C ; Protein Transport - drug effects ; Protein Tyrosine Phosphatases - analysis ; Protein Tyrosine Phosphatases - metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 5 ; Vacuoles - chemistry ; Vacuoles - metabolism</subject><ispartof>Infection and Immunity, 2006-12, Vol.74 (12), p.6571-6580</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright © 2006, American Society for Microbiology 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</citedby><cites>FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698068/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698068/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18310860$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17030583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Jyunzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Nishi, Yoshito</creatorcontrib><creatorcontrib>Wada, Akihiro</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Sap, Jan</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</description><subject>Activating Transcription Factor 2 - agonists</subject><subject>Activating Transcription Factor 2 - metabolism</subject><subject>Bacterial Proteins - analysis</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Cellular Microbiology: Pathogen-Host Cell Molecular Interactions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - metabolism</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Nerve Tissue Proteins - analysis</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nitrobenzoates - pharmacology</subject><subject>p38 Mitogen-Activated Protein Kinases - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphatidylinositol Diacylglycerol-Lyase - pharmacology</subject><subject>Phosphoinositide Phospholipase C</subject><subject>Protein Transport - drug effects</subject><subject>Protein Tyrosine Phosphatases - analysis</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>Receptor-Like Protein Tyrosine Phosphatases, Class 5</subject><subject>Vacuoles - chemistry</subject><subject>Vacuoles - metabolism</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcGO0zAQhiMEYsvCjTNYSHBqFjuOE-eCVFXARioCLbscuFgTd9wa0jhru0DfiRMPwjPh0moXTrbHn__xP3-WPWb0jLFCvmxn7RmlXFQ5re5kE0YbmQtRFHezCaWsyRtR1SfZgxC-pGNZlvJ-dsJqyqmQfJL9nPfbENHbYUWcIefYW-060KlExl3vvCWfQM-IHcjCjnZJLsDEMCXvcGkh4pJ0O9LGQC5Q4xidn97s8oX9iuSDdxHT48udd8EOqbB2YVxDhIDk968pafdvr7fWJy3jPGmH6H5YDdG6Yd919jkXBSNz7PvwMLtnoA_46LieZldvXl_Oz_PF-7ftfLbIdVnxmNxjgUUnpamAlqLjy0ZQjropESWHQhSNZiUTshYgTd0BE4CN2dOdwdrw0-zVQXfcdhtcahyih16N3m7A75QDq_6_Gexardw3xapG0komgRdHAe-utxii2tigkwUY0G2DqiSra9qIBE4PoE7jCR7NTRNG1T5eleJVf-NVtEr4k38_dgsf80zA8yMAQUNvPAzahltOckZlRRP37MCt7Wr9PQ1fQdgom4zVpWKFqkTNEvT0ABlwClY-CV19LCjjlLG904L_ASrrxJY</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Nakayama, Masaaki</creator><creator>Hisatsune, Jyunzo</creator><creator>Yamasaki, Eiki</creator><creator>Nishi, Yoshito</creator><creator>Wada, Akihiro</creator><creator>Kurazono, Hisao</creator><creator>Sap, Jan</creator><creator>Yahiro, Kinnosuke</creator><creator>Moss, Joel</creator><creator>Hirayama, Toshiya</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</title><author>Nakayama, Masaaki ; Hisatsune, Jyunzo ; Yamasaki, Eiki ; Nishi, Yoshito ; Wada, Akihiro ; Kurazono, Hisao ; Sap, Jan ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-55e2e2b88f6a045b3d9503ec94ee83a2529c1415875a8f7ba15ae9ff6a0bfe7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Activating Transcription Factor 2 - agonists</topic><topic>Activating Transcription Factor 2 - metabolism</topic><topic>Bacterial Proteins - analysis</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Cellular Microbiology: Pathogen-Host Cell Molecular Interactions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - metabolism</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Nerve Tissue Proteins - analysis</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nitrobenzoates - pharmacology</topic><topic>p38 Mitogen-Activated Protein Kinases - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphatidylinositol Diacylglycerol-Lyase - pharmacology</topic><topic>Phosphoinositide Phospholipase C</topic><topic>Protein Transport - drug effects</topic><topic>Protein Tyrosine Phosphatases - analysis</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>Receptor-Like Protein Tyrosine Phosphatases, Class 5</topic><topic>Vacuoles - chemistry</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Jyunzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Nishi, Yoshito</creatorcontrib><creatorcontrib>Wada, Akihiro</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Sap, Jan</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Masaaki</au><au>Hisatsune, Jyunzo</au><au>Yamasaki, Eiki</au><au>Nishi, Yoshito</au><au>Wada, Akihiro</au><au>Kurazono, Hisao</au><au>Sap, Jan</au><au>Yahiro, Kinnosuke</au><au>Moss, Joel</au><au>Hirayama, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>74</volume><issue>12</issue><spage>6571</spage><epage>6580</epage><pages>6571-6580</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflammatory responses and cell detachment. Our recent data demonstrated that VacA uses receptor-like protein tyrosine phosphatase β (RPTPβ) as a receptor, of which five residues (QTTQP) at positions 747 to 751 are involved in binding. In AZ-521 cells, which mainly express RPTPβ, VacA, after binding to RPTPβ in non-lipid raft microdomains on the cell surface, is localized with RPTPβ in lipid rafts in a temperature- and VacA concentration-dependent process. Methyl-β-cyclodextrin (MCD) did not block binding to RPTPβ but inhibited translocation of VacA with RPTPβ to lipid rafts and all subsequent events. On the other hand, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), which disrupts anion channels, did not inhibit translocation of VacA to lipid rafts or VacA-induced activation of p38 mitogen-activated protein (MAP) kinase, but inhibited VacA internalization followed by vacuolation. Thus, p38 MAP kinase activation did not appear to be required for internalization. In contrast, phosphatidylinositol-specific phospholipase C (PI-PLC) inhibited translocation, as well as p38 MAP kinase/ATF-2 activation, internalization, and VacA-induced vacuolation. Neither NPPB nor PI-PLC affected VacA binding to cells and to its receptor, RPTPβ. Thus, receptor-dependent translocation of VacA to lipid rafts is critical for signaling pathways leading to p38 MAP kinase/ATF-2 activation and vacuolation.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>17030583</pmid><doi>10.1128/IAI.00356-06</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-9567
ispartof Infection and Immunity, 2006-12, Vol.74 (12), p.6571-6580
issn 0019-9567
1098-5522
language eng
recordid cdi_pascalfrancis_primary_18310860
source MEDLINE; American Society for Microbiology Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Activating Transcription Factor 2 - agonists
Activating Transcription Factor 2 - metabolism
Bacterial Proteins - analysis
Bacterial Proteins - metabolism
Bacteriology
beta-Cyclodextrins - pharmacology
Biological and medical sciences
Cells, Cultured
Cellular Microbiology: Pathogen-Host Cell Molecular Interactions
Fundamental and applied biological sciences. Psychology
Humans
Membrane Microdomains - chemistry
Membrane Microdomains - metabolism
Microbiology
Miscellaneous
Nerve Tissue Proteins - analysis
Nerve Tissue Proteins - metabolism
Nitrobenzoates - pharmacology
p38 Mitogen-Activated Protein Kinases - drug effects
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphatidylinositol Diacylglycerol-Lyase - pharmacology
Phosphoinositide Phospholipase C
Protein Transport - drug effects
Protein Tyrosine Phosphatases - analysis
Protein Tyrosine Phosphatases - metabolism
Receptor-Like Protein Tyrosine Phosphatases, Class 5
Vacuoles - chemistry
Vacuoles - metabolism
title Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20Helicobacter%20pylori%20VacA%20in%20Lipid%20Rafts,%20Mediated%20by%20Its%20Receptor,%20Receptor-Like%20Protein%20Tyrosine%20Phosphatase%20%CE%B2,%20Is%20Required%20for%20Intoxication%20in%20AZ-521%20Cells&rft.jtitle=Infection%20and%20Immunity&rft.au=Nakayama,%20Masaaki&rft.date=2006-12-01&rft.volume=74&rft.issue=12&rft.spage=6571&rft.epage=6580&rft.pages=6571-6580&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.00356-06&rft_dat=%3Cproquest_pasca%3E68177095%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68177095&rft_id=info:pmid/17030583&rfr_iscdi=true