Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD

In this paper we describe a way to discover attribute associations and a way to present them to users using Bayesian networks. We describe a three-dimensional visualization to present them effectively to users. Furthermore we discuss two applications of attribute associations to the KDD process. One...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Masuda, Gou, Yano, Rei, Sakamoto, Norihiro, Ushijima, Kazuo
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 61
container_title
container_volume 1704
creator Masuda, Gou
Yano, Rei
Sakamoto, Norihiro
Ushijima, Kazuo
description In this paper we describe a way to discover attribute associations and a way to present them to users using Bayesian networks. We describe a three-dimensional visualization to present them effectively to users. Furthermore we discuss two applications of attribute associations to the KDD process. One application involves using them to support feature selection. The result of our experiment shows that feature selection using visualized attribute associations works well in 17 data sets out of the 24 that were used. The other application uses them to support the selection of data mining methods. We discuss the possibility of using attribute associations to help in deciding if a given data set is suited to learning decision trees. We found 3 types of structural characteristics in Bayesian networks obtained from the data. The characteristics have strong relevance to the results of learning decision trees.
doi_str_mv 10.1007/978-3-540-48247-5_7
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1829336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088590_12_74</sourcerecordid><originalsourceid>FETCH-LOGICAL-p314t-52564d0357587c0500cef53d2f49e1c70c8523c1ca1820d18090ead2de260cb93</originalsourceid><addsrcrecordid>eNotkE1TFDEQhoOo5Yr8Ai9z4BrtpJOZ5LiyCpYUXsBrKpvJSmSdGdNZKPz1ZHbJJdX9flT1w9hHAZ8EQPfZdoYj1wq4MlJ1XLvuiL3HutjP6hVbiFYIjqjs8UFoW2VBvWYLQJDcdgrfsoWtugHbinfslOgP1IdSG9QL5laJwvgQcxp-N37om1-Jdn6b_s_zspSc1rsSmyXRGJIvaRyouaVZ_OKfIiU_NNexPI75nvbxm7uYcnXEJg3Nj9XqA3uz8VuKpy__Cbv99vXm_JJf_bz4fr684hMKVbiWulU9oO606QJogBA3Gnu5UTaK0EEwWmIQwQsjoRf1Goi-l32ULYS1xRN2duidPAW_3WQ_hERuyumvz0-upixiW23iYKNpvjhmtx7He3IC3EzcVeIOXeXo9oRdJV4z8qU6j_92kYqLcyjEoWS_DXd-KjGTQzBG29ojXaX-DMjYfkw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088590_12_74</pqid></control><display><type>book_chapter</type><title>Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD</title><source>Springer Books</source><creator>Masuda, Gou ; Yano, Rei ; Sakamoto, Norihiro ; Ushijima, Kazuo</creator><contributor>Zytkow, Jan ; Rauch, Jan ; van Leeuwen, Jan ; Żytkow, Jan M. ; Rauch, Jan</contributor><creatorcontrib>Masuda, Gou ; Yano, Rei ; Sakamoto, Norihiro ; Ushijima, Kazuo ; Zytkow, Jan ; Rauch, Jan ; van Leeuwen, Jan ; Żytkow, Jan M. ; Rauch, Jan</creatorcontrib><description>In this paper we describe a way to discover attribute associations and a way to present them to users using Bayesian networks. We describe a three-dimensional visualization to present them effectively to users. Furthermore we discuss two applications of attribute associations to the KDD process. One application involves using them to support feature selection. The result of our experiment shows that feature selection using visualized attribute associations works well in 17 data sets out of the 24 that were used. The other application uses them to support the selection of data mining methods. We discuss the possibility of using attribute associations to help in deciding if a given data set is suited to learning decision trees. We found 3 types of structural characteristics in Bayesian networks obtained from the data. The characteristics have strong relevance to the results of learning decision trees.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540664904</identifier><identifier>ISBN: 9783540664901</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482474</identifier><identifier>EISBN: 9783540482475</identifier><identifier>DOI: 10.1007/978-3-540-48247-5_7</identifier><identifier>OCLC: 934980961</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Bayesian Network ; Computer science; control theory; systems ; Data Mining Method ; Exact sciences and technology ; Feature Selection ; Information systems. Data bases ; Memory organisation. Data processing ; Software ; Star Type ; Target Concept</subject><ispartof>Lecture notes in computer science, 1999, Vol.1704, p.61-70</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088590-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-48247-5_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-48247-5_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1829336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zytkow, Jan</contributor><contributor>Rauch, Jan</contributor><contributor>van Leeuwen, Jan</contributor><contributor>Żytkow, Jan M.</contributor><contributor>Rauch, Jan</contributor><creatorcontrib>Masuda, Gou</creatorcontrib><creatorcontrib>Yano, Rei</creatorcontrib><creatorcontrib>Sakamoto, Norihiro</creatorcontrib><creatorcontrib>Ushijima, Kazuo</creatorcontrib><title>Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD</title><title>Lecture notes in computer science</title><description>In this paper we describe a way to discover attribute associations and a way to present them to users using Bayesian networks. We describe a three-dimensional visualization to present them effectively to users. Furthermore we discuss two applications of attribute associations to the KDD process. One application involves using them to support feature selection. The result of our experiment shows that feature selection using visualized attribute associations works well in 17 data sets out of the 24 that were used. The other application uses them to support the selection of data mining methods. We discuss the possibility of using attribute associations to help in deciding if a given data set is suited to learning decision trees. We found 3 types of structural characteristics in Bayesian networks obtained from the data. The characteristics have strong relevance to the results of learning decision trees.</description><subject>Applied sciences</subject><subject>Bayesian Network</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining Method</subject><subject>Exact sciences and technology</subject><subject>Feature Selection</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><subject>Star Type</subject><subject>Target Concept</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540664904</isbn><isbn>9783540664901</isbn><isbn>3540482474</isbn><isbn>9783540482475</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkE1TFDEQhoOo5Yr8Ai9z4BrtpJOZ5LiyCpYUXsBrKpvJSmSdGdNZKPz1ZHbJJdX9flT1w9hHAZ8EQPfZdoYj1wq4MlJ1XLvuiL3HutjP6hVbiFYIjqjs8UFoW2VBvWYLQJDcdgrfsoWtugHbinfslOgP1IdSG9QL5laJwvgQcxp-N37om1-Jdn6b_s_zspSc1rsSmyXRGJIvaRyouaVZ_OKfIiU_NNexPI75nvbxm7uYcnXEJg3Nj9XqA3uz8VuKpy__Cbv99vXm_JJf_bz4fr684hMKVbiWulU9oO606QJogBA3Gnu5UTaK0EEwWmIQwQsjoRf1Goi-l32ULYS1xRN2duidPAW_3WQ_hERuyumvz0-upixiW23iYKNpvjhmtx7He3IC3EzcVeIOXeXo9oRdJV4z8qU6j_92kYqLcyjEoWS_DXd-KjGTQzBG29ojXaX-DMjYfkw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Masuda, Gou</creator><creator>Yano, Rei</creator><creator>Sakamoto, Norihiro</creator><creator>Ushijima, Kazuo</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD</title><author>Masuda, Gou ; Yano, Rei ; Sakamoto, Norihiro ; Ushijima, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p314t-52564d0357587c0500cef53d2f49e1c70c8523c1ca1820d18090ead2de260cb93</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Bayesian Network</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining Method</topic><topic>Exact sciences and technology</topic><topic>Feature Selection</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><topic>Star Type</topic><topic>Target Concept</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Gou</creatorcontrib><creatorcontrib>Yano, Rei</creatorcontrib><creatorcontrib>Sakamoto, Norihiro</creatorcontrib><creatorcontrib>Ushijima, Kazuo</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Gou</au><au>Yano, Rei</au><au>Sakamoto, Norihiro</au><au>Ushijima, Kazuo</au><au>Zytkow, Jan</au><au>Rauch, Jan</au><au>van Leeuwen, Jan</au><au>Żytkow, Jan M.</au><au>Rauch, Jan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><volume>1704</volume><spage>61</spage><epage>70</epage><pages>61-70</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540664904</isbn><isbn>9783540664901</isbn><eisbn>3540482474</eisbn><eisbn>9783540482475</eisbn><abstract>In this paper we describe a way to discover attribute associations and a way to present them to users using Bayesian networks. We describe a three-dimensional visualization to present them effectively to users. Furthermore we discuss two applications of attribute associations to the KDD process. One application involves using them to support feature selection. The result of our experiment shows that feature selection using visualized attribute associations works well in 17 data sets out of the 24 that were used. The other application uses them to support the selection of data mining methods. We discuss the possibility of using attribute associations to help in deciding if a given data set is suited to learning decision trees. We found 3 types of structural characteristics in Bayesian networks obtained from the data. The characteristics have strong relevance to the results of learning decision trees.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-48247-5_7</doi><oclcid>934980961</oclcid><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 1999, Vol.1704, p.61-70
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1829336
source Springer Books
subjects Applied sciences
Bayesian Network
Computer science
control theory
systems
Data Mining Method
Exact sciences and technology
Feature Selection
Information systems. Data bases
Memory organisation. Data processing
Software
Star Type
Target Concept
title Discovering and Visualizing Attribute Associations Using Bayesian Networks and Their Use in KDD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Discovering%20and%20Visualizing%20Attribute%20Associations%20Using%20Bayesian%20Networks%20and%20Their%20Use%20in%20KDD&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Masuda,%20Gou&rft.date=1999&rft.volume=1704&rft.spage=61&rft.epage=70&rft.pages=61-70&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540664904&rft.isbn_list=9783540664901&rft_id=info:doi/10.1007/978-3-540-48247-5_7&rft_dat=%3Cproquest_pasca%3EEBC3088590_12_74%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482474&rft.eisbn_list=9783540482475&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088590_12_74&rft_id=info:pmid/&rfr_iscdi=true