Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003
The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2716 vol.4 |
---|---|
container_issue | |
container_start_page | 2713 |
container_title | |
container_volume | 4 |
creator | Kyung-Soo Han Tanguy, Y. Champeaux, J.-L. Hagolle, O. |
description | The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France. |
doi_str_mv | 10.1109/IGARSS.2004.1369861 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18280939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369861</ieee_id><sourcerecordid>18280939</sourcerecordid><originalsourceid>FETCH-LOGICAL-i509-234d61c0faefd3bf3b78a038c1b8acdc5a47f9a7b8e1dde2913a7f216e40ba23</originalsourceid><addsrcrecordid>eNpFkE1rwkAQhhdKoa31F3iZS4_qfsRk05uIWkFqaUKvMtmd1S0xkWxa8If0_zZWoXOZr5eHd4axgeAjIXg6Xi2n71k2kpxHI6HiVMfihj3wRHOlk0jKO9YP4ZN3EU14HOl79pNTaKF2YL1z1FDVgikxBO-8wdbXFRyo3de2LuudpwCubqDEyoKpv6mBAx6PvtrBX7NosDIEX-E8yd42-fhjvpzn03y1eQWLLT5DJy-v4ABtDe2e4ETYBOg8SziDu0I9sluHZaD-NfdYtpjns5fherNczabroZ_wdChVZGNhuENyVhVOFYnG7lIjCo3GmglGiUsxKTQJa0mmQmHipIgp4gVK1WNPF-oRg8HSne37sD02_oDNaSu01DxVaacbXHSeiP7Xl_-qXwhzcf4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</creator><creatorcontrib>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</creatorcontrib><description>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</description><identifier>ISBN: 0780387422</identifier><identifier>ISBN: 9780780387423</identifier><identifier>DOI: 10.1109/IGARSS.2004.1369861</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied geophysics ; Clouds ; Discrete cosine transforms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Multi-layer neural network ; Neural networks ; Polynomials ; Reflectivity ; Remote sensing ; Spatial resolution ; System testing ; Vegetation mapping</subject><ispartof>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, Vol.4, p.2713-2716 vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18280939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyung-Soo Han</creatorcontrib><creatorcontrib>Tanguy, Y.</creatorcontrib><creatorcontrib>Champeaux, J.-L.</creatorcontrib><creatorcontrib>Hagolle, O.</creatorcontrib><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><title>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</description><subject>Applied geophysics</subject><subject>Clouds</subject><subject>Discrete cosine transforms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>System testing</subject><subject>Vegetation mapping</subject><isbn>0780387422</isbn><isbn>9780780387423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1rwkAQhhdKoa31F3iZS4_qfsRk05uIWkFqaUKvMtmd1S0xkWxa8If0_zZWoXOZr5eHd4axgeAjIXg6Xi2n71k2kpxHI6HiVMfihj3wRHOlk0jKO9YP4ZN3EU14HOl79pNTaKF2YL1z1FDVgikxBO-8wdbXFRyo3de2LuudpwCubqDEyoKpv6mBAx6PvtrBX7NosDIEX-E8yd42-fhjvpzn03y1eQWLLT5DJy-v4ABtDe2e4ETYBOg8SziDu0I9sluHZaD-NfdYtpjns5fherNczabroZ_wdChVZGNhuENyVhVOFYnG7lIjCo3GmglGiUsxKTQJa0mmQmHipIgp4gVK1WNPF-oRg8HSne37sD02_oDNaSu01DxVaacbXHSeiP7Xl_-qXwhzcf4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kyung-Soo Han</creator><creator>Tanguy, Y.</creator><creator>Champeaux, J.-L.</creator><creator>Hagolle, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><author>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i509-234d61c0faefd3bf3b78a038c1b8acdc5a47f9a7b8e1dde2913a7f216e40ba23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied geophysics</topic><topic>Clouds</topic><topic>Discrete cosine transforms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>System testing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyung-Soo Han</creatorcontrib><creatorcontrib>Tanguy, Y.</creatorcontrib><creatorcontrib>Champeaux, J.-L.</creatorcontrib><creatorcontrib>Hagolle, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyung-Soo Han</au><au>Tanguy, Y.</au><au>Champeaux, J.-L.</au><au>Hagolle, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</atitle><btitle>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>2713</spage><epage>2716 vol.4</epage><pages>2713-2716 vol.4</pages><isbn>0780387422</isbn><isbn>9780780387423</isbn><abstract>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IGARSS.2004.1369861</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780387422 |
ispartof | IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, Vol.4, p.2713-2716 vol.4 |
issn | |
language | eng |
recordid | cdi_pascalfrancis_primary_18280939 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied geophysics Clouds Discrete cosine transforms Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics Multi-layer neural network Neural networks Polynomials Reflectivity Remote sensing Spatial resolution System testing Vegetation mapping |
title | Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Test%20of%20different%20classification%20methodologies%20for%20land%20cover%20mapping%20over%20France%20using%20SPOT/VEGETATION%20data:%20applications%20to%20the%20years%202002%20and%202003&rft.btitle=IGARSS%202004.%202004%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Kyung-Soo%20Han&rft.date=2004&rft.volume=4&rft.spage=2713&rft.epage=2716%20vol.4&rft.pages=2713-2716%20vol.4&rft.isbn=0780387422&rft.isbn_list=9780780387423&rft_id=info:doi/10.1109/IGARSS.2004.1369861&rft_dat=%3Cpascalfrancis_6IE%3E18280939%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1369861&rfr_iscdi=true |