Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003

The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kyung-Soo Han, Tanguy, Y., Champeaux, J.-L., Hagolle, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2716 vol.4
container_issue
container_start_page 2713
container_title
container_volume 4
creator Kyung-Soo Han
Tanguy, Y.
Champeaux, J.-L.
Hagolle, O.
description The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.
doi_str_mv 10.1109/IGARSS.2004.1369861
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18280939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369861</ieee_id><sourcerecordid>18280939</sourcerecordid><originalsourceid>FETCH-LOGICAL-i509-234d61c0faefd3bf3b78a038c1b8acdc5a47f9a7b8e1dde2913a7f216e40ba23</originalsourceid><addsrcrecordid>eNpFkE1rwkAQhhdKoa31F3iZS4_qfsRk05uIWkFqaUKvMtmd1S0xkWxa8If0_zZWoXOZr5eHd4axgeAjIXg6Xi2n71k2kpxHI6HiVMfihj3wRHOlk0jKO9YP4ZN3EU14HOl79pNTaKF2YL1z1FDVgikxBO-8wdbXFRyo3de2LuudpwCubqDEyoKpv6mBAx6PvtrBX7NosDIEX-E8yd42-fhjvpzn03y1eQWLLT5DJy-v4ABtDe2e4ETYBOg8SziDu0I9sluHZaD-NfdYtpjns5fherNczabroZ_wdChVZGNhuENyVhVOFYnG7lIjCo3GmglGiUsxKTQJa0mmQmHipIgp4gVK1WNPF-oRg8HSne37sD02_oDNaSu01DxVaacbXHSeiP7Xl_-qXwhzcf4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</creator><creatorcontrib>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</creatorcontrib><description>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</description><identifier>ISBN: 0780387422</identifier><identifier>ISBN: 9780780387423</identifier><identifier>DOI: 10.1109/IGARSS.2004.1369861</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied geophysics ; Clouds ; Discrete cosine transforms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Multi-layer neural network ; Neural networks ; Polynomials ; Reflectivity ; Remote sensing ; Spatial resolution ; System testing ; Vegetation mapping</subject><ispartof>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, Vol.4, p.2713-2716 vol.4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18280939$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyung-Soo Han</creatorcontrib><creatorcontrib>Tanguy, Y.</creatorcontrib><creatorcontrib>Champeaux, J.-L.</creatorcontrib><creatorcontrib>Hagolle, O.</creatorcontrib><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><title>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</description><subject>Applied geophysics</subject><subject>Clouds</subject><subject>Discrete cosine transforms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>System testing</subject><subject>Vegetation mapping</subject><isbn>0780387422</isbn><isbn>9780780387423</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1rwkAQhhdKoa31F3iZS4_qfsRk05uIWkFqaUKvMtmd1S0xkWxa8If0_zZWoXOZr5eHd4axgeAjIXg6Xi2n71k2kpxHI6HiVMfihj3wRHOlk0jKO9YP4ZN3EU14HOl79pNTaKF2YL1z1FDVgikxBO-8wdbXFRyo3de2LuudpwCubqDEyoKpv6mBAx6PvtrBX7NosDIEX-E8yd42-fhjvpzn03y1eQWLLT5DJy-v4ABtDe2e4ETYBOg8SziDu0I9sluHZaD-NfdYtpjns5fherNczabroZ_wdChVZGNhuENyVhVOFYnG7lIjCo3GmglGiUsxKTQJa0mmQmHipIgp4gVK1WNPF-oRg8HSne37sD02_oDNaSu01DxVaacbXHSeiP7Xl_-qXwhzcf4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kyung-Soo Han</creator><creator>Tanguy, Y.</creator><creator>Champeaux, J.-L.</creator><creator>Hagolle, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</title><author>Kyung-Soo Han ; Tanguy, Y. ; Champeaux, J.-L. ; Hagolle, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i509-234d61c0faefd3bf3b78a038c1b8acdc5a47f9a7b8e1dde2913a7f216e40ba23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied geophysics</topic><topic>Clouds</topic><topic>Discrete cosine transforms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>System testing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyung-Soo Han</creatorcontrib><creatorcontrib>Tanguy, Y.</creatorcontrib><creatorcontrib>Champeaux, J.-L.</creatorcontrib><creatorcontrib>Hagolle, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyung-Soo Han</au><au>Tanguy, Y.</au><au>Champeaux, J.-L.</au><au>Hagolle, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003</atitle><btitle>IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>2713</spage><epage>2716 vol.4</epage><pages>2713-2716 vol.4</pages><isbn>0780387422</isbn><isbn>9780780387423</isbn><abstract>The present study aims at testing several methodologies of land cover mapping over France at 1 km resolution based on the remotely sensed observations provided by the operational SPOT 4-5/VEGETATION (VGT) Earth observing system. Neural networks classifications are performed to test alternatives for the classification of multi-temporal remote sensing data, such as normalized reflectance data and 10-day maximum value composite NDVI (normalized difference vegetation index). The new products shows an improvement of the accuracy compared to Global Land Cover 2000 project (GLC 2000) map over France.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IGARSS.2004.1369861</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780387422
ispartof IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, Vol.4, p.2713-2716 vol.4
issn
language eng
recordid cdi_pascalfrancis_primary_18280939
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied geophysics
Clouds
Discrete cosine transforms
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Multi-layer neural network
Neural networks
Polynomials
Reflectivity
Remote sensing
Spatial resolution
System testing
Vegetation mapping
title Test of different classification methodologies for land cover mapping over France using SPOT/VEGETATION data: applications to the years 2002 and 2003
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Test%20of%20different%20classification%20methodologies%20for%20land%20cover%20mapping%20over%20France%20using%20SPOT/VEGETATION%20data:%20applications%20to%20the%20years%202002%20and%202003&rft.btitle=IGARSS%202004.%202004%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Kyung-Soo%20Han&rft.date=2004&rft.volume=4&rft.spage=2713&rft.epage=2716%20vol.4&rft.pages=2713-2716%20vol.4&rft.isbn=0780387422&rft.isbn_list=9780780387423&rft_id=info:doi/10.1109/IGARSS.2004.1369861&rft_dat=%3Cpascalfrancis_6IE%3E18280939%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1369861&rfr_iscdi=true