On-Line Zone Construction in Arrangements of Lines in the Plane

Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aharoni, Yuval, Halperin, Dan, Hanniel, Iddo, Har-Peled, Sariel, Linhart, Chaim
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue
container_start_page 139
container_title
container_volume
creator Aharoni, Yuval
Halperin, Dan
Hanniel, Iddo
Har-Peled, Sariel
Linhart, Chaim
description Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.
doi_str_mv 10.1007/3-540-48318-7_13
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1827248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072213_18_147</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-84e17f52ad8fad2334dfc4fc1254e7e28b5e2ccebb294a271d034527f203ec103</originalsourceid><addsrcrecordid>eNotkLtPwzAQxs1ThNKdMQOri-_OidMJVRUvqVIZYGGxHMehgTYpdjrw3-O09XCW7rvHdz_GbkFMQAh1TzyTgsuCoOBKA52wa4qZfUKdsgRyAE4kp2cHIc8lKnHOEkEC-VRJumTJNCsyRAXqio1D-BbxEQLkImEPy5Yvmtaln10M864Nvd_ZvunatGnTmfem_XIb1_Yh7ep0qAyD0K9c-rY2rbthF7VZBzc-_iP28fT4Pn_hi-Xz63y24FvMVc8L6UDVGZqqqE2F0XBVW1lbwEw65bAoM4fWurLEqTTRaiVIZqhqFOQsCBqxu8PcrQnWrOvoyzZBb32zMf5PQ4EKI5QRmxzKQlSic6_LrvsJGoQecGrSkZHe09MDzthAx7m--9250Gs3dNh4sTdruzLb3vmgSShEoLhHg1T0D0vMcYc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072213_18_147</pqid></control><display><type>book_chapter</type><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><source>Springer Books</source><creator>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim</creator><contributor>Carbonell, Jaime G ; Siekmann, Jörg ; Goos, Gerhard ; Zaroliagis, Christos D. ; Vitter, Jeffrey S.</contributor><creatorcontrib>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim ; Carbonell, Jaime G ; Siekmann, Jörg ; Goos, Gerhard ; Zaroliagis, Christos D. ; Vitter, Jeffrey S.</creatorcontrib><description>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540664270</identifier><identifier>ISBN: 9783540664277</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540483187</identifier><identifier>EISBN: 9783540483182</identifier><identifier>DOI: 10.1007/3-540-48318-7_13</identifier><identifier>OCLC: 958522717</identifier><identifier>LCCallNum: QA76.6-76.66QA75.5-</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Binary Search Tree ; Computer science; control theory; systems ; Convex Hull ; Exact sciences and technology ; Input Line ; Recursion Tree ; Single Face ; Theoretical computing</subject><ispartof>Algorithm Engineering, 1999, p.139-153</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072213-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48318-7_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48318-7_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1827248$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Carbonell, Jaime G</contributor><contributor>Siekmann, Jörg</contributor><contributor>Goos, Gerhard</contributor><contributor>Zaroliagis, Christos D.</contributor><contributor>Vitter, Jeffrey S.</contributor><creatorcontrib>Aharoni, Yuval</creatorcontrib><creatorcontrib>Halperin, Dan</creatorcontrib><creatorcontrib>Hanniel, Iddo</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><creatorcontrib>Linhart, Chaim</creatorcontrib><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><title>Algorithm Engineering</title><description>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Binary Search Tree</subject><subject>Computer science; control theory; systems</subject><subject>Convex Hull</subject><subject>Exact sciences and technology</subject><subject>Input Line</subject><subject>Recursion Tree</subject><subject>Single Face</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540664270</isbn><isbn>9783540664277</isbn><isbn>3540483187</isbn><isbn>9783540483182</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkLtPwzAQxs1ThNKdMQOri-_OidMJVRUvqVIZYGGxHMehgTYpdjrw3-O09XCW7rvHdz_GbkFMQAh1TzyTgsuCoOBKA52wa4qZfUKdsgRyAE4kp2cHIc8lKnHOEkEC-VRJumTJNCsyRAXqio1D-BbxEQLkImEPy5Yvmtaln10M864Nvd_ZvunatGnTmfem_XIb1_Yh7ep0qAyD0K9c-rY2rbthF7VZBzc-_iP28fT4Pn_hi-Xz63y24FvMVc8L6UDVGZqqqE2F0XBVW1lbwEw65bAoM4fWurLEqTTRaiVIZqhqFOQsCBqxu8PcrQnWrOvoyzZBb32zMf5PQ4EKI5QRmxzKQlSic6_LrvsJGoQecGrSkZHe09MDzthAx7m--9250Gs3dNh4sTdruzLb3vmgSShEoLhHg1T0D0vMcYc</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Aharoni, Yuval</creator><creator>Halperin, Dan</creator><creator>Hanniel, Iddo</creator><creator>Har-Peled, Sariel</creator><creator>Linhart, Chaim</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><author>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-84e17f52ad8fad2334dfc4fc1254e7e28b5e2ccebb294a271d034527f203ec103</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Binary Search Tree</topic><topic>Computer science; control theory; systems</topic><topic>Convex Hull</topic><topic>Exact sciences and technology</topic><topic>Input Line</topic><topic>Recursion Tree</topic><topic>Single Face</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aharoni, Yuval</creatorcontrib><creatorcontrib>Halperin, Dan</creatorcontrib><creatorcontrib>Hanniel, Iddo</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><creatorcontrib>Linhart, Chaim</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aharoni, Yuval</au><au>Halperin, Dan</au><au>Hanniel, Iddo</au><au>Har-Peled, Sariel</au><au>Linhart, Chaim</au><au>Carbonell, Jaime G</au><au>Siekmann, Jörg</au><au>Goos, Gerhard</au><au>Zaroliagis, Christos D.</au><au>Vitter, Jeffrey S.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On-Line Zone Construction in Arrangements of Lines in the Plane</atitle><btitle>Algorithm Engineering</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><spage>139</spage><epage>153</epage><pages>139-153</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540664270</isbn><isbn>9783540664277</isbn><eisbn>3540483187</eisbn><eisbn>9783540483182</eisbn><abstract>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48318-7_13</doi><oclcid>958522717</oclcid><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithm Engineering, 1999, p.139-153
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1827248
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Binary Search Tree
Computer science
control theory
systems
Convex Hull
Exact sciences and technology
Input Line
Recursion Tree
Single Face
Theoretical computing
title On-Line Zone Construction in Arrangements of Lines in the Plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On-Line%20Zone%20Construction%20in%20Arrangements%20of%20Lines%20in%20the%20Plane&rft.btitle=Algorithm%20Engineering&rft.au=Aharoni,%20Yuval&rft.date=1999&rft.spage=139&rft.epage=153&rft.pages=139-153&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540664270&rft.isbn_list=9783540664277&rft_id=info:doi/10.1007/3-540-48318-7_13&rft_dat=%3Cproquest_pasca%3EEBC3072213_18_147%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540483187&rft.eisbn_list=9783540483182&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072213_18_147&rft_id=info:pmid/&rfr_iscdi=true