On-Line Zone Construction in Arrangements of Lines in the Plane
Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. T...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | |
container_start_page | 139 |
container_title | |
container_volume | |
creator | Aharoni, Yuval Halperin, Dan Hanniel, Iddo Har-Peled, Sariel Linhart, Chaim |
description | Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms. |
doi_str_mv | 10.1007/3-540-48318-7_13 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1827248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072213_18_147</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-84e17f52ad8fad2334dfc4fc1254e7e28b5e2ccebb294a271d034527f203ec103</originalsourceid><addsrcrecordid>eNotkLtPwzAQxs1ThNKdMQOri-_OidMJVRUvqVIZYGGxHMehgTYpdjrw3-O09XCW7rvHdz_GbkFMQAh1TzyTgsuCoOBKA52wa4qZfUKdsgRyAE4kp2cHIc8lKnHOEkEC-VRJumTJNCsyRAXqio1D-BbxEQLkImEPy5Yvmtaln10M864Nvd_ZvunatGnTmfem_XIb1_Yh7ep0qAyD0K9c-rY2rbthF7VZBzc-_iP28fT4Pn_hi-Xz63y24FvMVc8L6UDVGZqqqE2F0XBVW1lbwEw65bAoM4fWurLEqTTRaiVIZqhqFOQsCBqxu8PcrQnWrOvoyzZBb32zMf5PQ4EKI5QRmxzKQlSic6_LrvsJGoQecGrSkZHe09MDzthAx7m--9250Gs3dNh4sTdruzLb3vmgSShEoLhHg1T0D0vMcYc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072213_18_147</pqid></control><display><type>book_chapter</type><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><source>Springer Books</source><creator>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim</creator><contributor>Carbonell, Jaime G ; Siekmann, Jörg ; Goos, Gerhard ; Zaroliagis, Christos D. ; Vitter, Jeffrey S.</contributor><creatorcontrib>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim ; Carbonell, Jaime G ; Siekmann, Jörg ; Goos, Gerhard ; Zaroliagis, Christos D. ; Vitter, Jeffrey S.</creatorcontrib><description>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540664270</identifier><identifier>ISBN: 9783540664277</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540483187</identifier><identifier>EISBN: 9783540483182</identifier><identifier>DOI: 10.1007/3-540-48318-7_13</identifier><identifier>OCLC: 958522717</identifier><identifier>LCCallNum: QA76.6-76.66QA75.5-</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Binary Search Tree ; Computer science; control theory; systems ; Convex Hull ; Exact sciences and technology ; Input Line ; Recursion Tree ; Single Face ; Theoretical computing</subject><ispartof>Algorithm Engineering, 1999, p.139-153</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072213-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48318-7_13$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48318-7_13$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1827248$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Carbonell, Jaime G</contributor><contributor>Siekmann, Jörg</contributor><contributor>Goos, Gerhard</contributor><contributor>Zaroliagis, Christos D.</contributor><contributor>Vitter, Jeffrey S.</contributor><creatorcontrib>Aharoni, Yuval</creatorcontrib><creatorcontrib>Halperin, Dan</creatorcontrib><creatorcontrib>Hanniel, Iddo</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><creatorcontrib>Linhart, Chaim</creatorcontrib><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><title>Algorithm Engineering</title><description>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Binary Search Tree</subject><subject>Computer science; control theory; systems</subject><subject>Convex Hull</subject><subject>Exact sciences and technology</subject><subject>Input Line</subject><subject>Recursion Tree</subject><subject>Single Face</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540664270</isbn><isbn>9783540664277</isbn><isbn>3540483187</isbn><isbn>9783540483182</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkLtPwzAQxs1ThNKdMQOri-_OidMJVRUvqVIZYGGxHMehgTYpdjrw3-O09XCW7rvHdz_GbkFMQAh1TzyTgsuCoOBKA52wa4qZfUKdsgRyAE4kp2cHIc8lKnHOEkEC-VRJumTJNCsyRAXqio1D-BbxEQLkImEPy5Yvmtaln10M864Nvd_ZvunatGnTmfem_XIb1_Yh7ep0qAyD0K9c-rY2rbthF7VZBzc-_iP28fT4Pn_hi-Xz63y24FvMVc8L6UDVGZqqqE2F0XBVW1lbwEw65bAoM4fWurLEqTTRaiVIZqhqFOQsCBqxu8PcrQnWrOvoyzZBb32zMf5PQ4EKI5QRmxzKQlSic6_LrvsJGoQecGrSkZHe09MDzthAx7m--9250Gs3dNh4sTdruzLb3vmgSShEoLhHg1T0D0vMcYc</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Aharoni, Yuval</creator><creator>Halperin, Dan</creator><creator>Hanniel, Iddo</creator><creator>Har-Peled, Sariel</creator><creator>Linhart, Chaim</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>On-Line Zone Construction in Arrangements of Lines in the Plane</title><author>Aharoni, Yuval ; Halperin, Dan ; Hanniel, Iddo ; Har-Peled, Sariel ; Linhart, Chaim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-84e17f52ad8fad2334dfc4fc1254e7e28b5e2ccebb294a271d034527f203ec103</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Binary Search Tree</topic><topic>Computer science; control theory; systems</topic><topic>Convex Hull</topic><topic>Exact sciences and technology</topic><topic>Input Line</topic><topic>Recursion Tree</topic><topic>Single Face</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aharoni, Yuval</creatorcontrib><creatorcontrib>Halperin, Dan</creatorcontrib><creatorcontrib>Hanniel, Iddo</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><creatorcontrib>Linhart, Chaim</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aharoni, Yuval</au><au>Halperin, Dan</au><au>Hanniel, Iddo</au><au>Har-Peled, Sariel</au><au>Linhart, Chaim</au><au>Carbonell, Jaime G</au><au>Siekmann, Jörg</au><au>Goos, Gerhard</au><au>Zaroliagis, Christos D.</au><au>Vitter, Jeffrey S.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On-Line Zone Construction in Arrangements of Lines in the Plane</atitle><btitle>Algorithm Engineering</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><spage>139</spage><epage>153</epage><pages>139-153</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540664270</isbn><isbn>9783540664277</isbn><eisbn>3540483187</eisbn><eisbn>9783540483182</eisbn><abstract>Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48318-7_13</doi><oclcid>958522717</oclcid><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithm Engineering, 1999, p.139-153 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1827248 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Binary Search Tree Computer science control theory systems Convex Hull Exact sciences and technology Input Line Recursion Tree Single Face Theoretical computing |
title | On-Line Zone Construction in Arrangements of Lines in the Plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On-Line%20Zone%20Construction%20in%20Arrangements%20of%20Lines%20in%20the%20Plane&rft.btitle=Algorithm%20Engineering&rft.au=Aharoni,%20Yuval&rft.date=1999&rft.spage=139&rft.epage=153&rft.pages=139-153&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540664270&rft.isbn_list=9783540664277&rft_id=info:doi/10.1007/3-540-48318-7_13&rft_dat=%3Cproquest_pasca%3EEBC3072213_18_147%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540483187&rft.eisbn_list=9783540483182&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072213_18_147&rft_id=info:pmid/&rfr_iscdi=true |