Multi-stage Cascaded Prediction

Two-level predictors deliver highly accurate conditional branch prediction, indirect branch target prediction and value prediction. Accurate prediction enables speculative execution of instructions, a technique that increases instruction level parallelism. Unfortunately, the accuracy of a two level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Driesen, Karel, Hölzle, Urs
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue
container_start_page 1312
container_title
container_volume
creator Driesen, Karel
Hölzle, Urs
description Two-level predictors deliver highly accurate conditional branch prediction, indirect branch target prediction and value prediction. Accurate prediction enables speculative execution of instructions, a technique that increases instruction level parallelism. Unfortunately, the accuracy of a two level predictor is limited by the cost of the predictor table that stores associations between history patterns and target predictions. Two-stage cascaded prediction, a recently proposed hybrid prediction architecture, uses pattern filtering to reduce the cost of this table while preserving prediction accuracy. In this study we generalize two-stage prediction to multi-stage prediction. We first determine the limit of accuracy on an indirect branch trace using a multi-stage predictor with an unlimited hardware budget. We then investigate practical cascaded predictors with limited tables and a small number of stages. Compared to two-level prediction, multi-stage cascaded prediction delivers superior prediction accuracy for any given total table entry budget we considered. In particular, a 512-entry three-stage cascaded predictor reaches 92% accuracy, reducing table size by a factor of four compared to a two-level predictor. At 1.5K entries, a three-stage predictor reaches 94% accuracy, the hit rate of a hypothetical two-level predictor with an unlimited, fully associative predictor table. These results indicate that highly accurate indirect branch target prediction is now well within the capability of current hardware technology.
doi_str_mv 10.1007/3-540-48311-X_186
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1826836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071668_190_1341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-451e14161e6160d124db212b2f7214d212a4c5e0b0f60b0e414bd9d718b1ef553</originalsourceid><addsrcrecordid>eNotUEtTwyAQxucYa3-AJ3vwimVZIOHodHzN1NGDzvTGkEBqNCYV0oP_XtK6B3ZnvwfwEXIJ7AYYy-dIpWBUFAhAVwYKdUDOMa12m9UhyUAlBFHoIzLVeTFiSgmB-THJGDJOdS7wlGRaFpJjYp-RaYyfLBVyrrXKyNXzth0aGge79rOFjZV13s1eg3dNNTR9d0FOattGP_3vE_J-f_e2eKTLl4enxe2SVqhgoEKCB5Fu8AoUc8CFKznwktc5B-HSaEUlPStZrdLhBYjSaZdDUYKvpcQJud77bsY3tHWwXdVEswnNtw2_6fNcFagSbb6nxYR0ax9M2fdf0QAzY2QGTcrA7AIyu8iSQv4bh_5n6-Ng_CipfDcE21YfdjP4EA2yHJQqDOjkhALwD_vkZw0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071668_190_1341</pqid></control><display><type>book_chapter</type><title>Multi-stage Cascaded Prediction</title><source>Springer Books</source><creator>Driesen, Karel ; Hölzle, Urs</creator><contributor>Giraud, Luc ; Goos, Gerhard ; Hartmanis, Juris ; Ruiz, Daniel ; Fraysse, Valerie ; van Leeuwen, Jan ; Duff, Iain ; Giraud, Luc ; Berger, Philippe ; Ruiz, Daniel ; Duff, Iain ; Daydé, Michel ; Amestoy, Patrick ; Frayssé, Valérie</contributor><creatorcontrib>Driesen, Karel ; Hölzle, Urs ; Giraud, Luc ; Goos, Gerhard ; Hartmanis, Juris ; Ruiz, Daniel ; Fraysse, Valerie ; van Leeuwen, Jan ; Duff, Iain ; Giraud, Luc ; Berger, Philippe ; Ruiz, Daniel ; Duff, Iain ; Daydé, Michel ; Amestoy, Patrick ; Frayssé, Valérie</creatorcontrib><description>Two-level predictors deliver highly accurate conditional branch prediction, indirect branch target prediction and value prediction. Accurate prediction enables speculative execution of instructions, a technique that increases instruction level parallelism. Unfortunately, the accuracy of a two level predictor is limited by the cost of the predictor table that stores associations between history patterns and target predictions. Two-stage cascaded prediction, a recently proposed hybrid prediction architecture, uses pattern filtering to reduce the cost of this table while preserving prediction accuracy. In this study we generalize two-stage prediction to multi-stage prediction. We first determine the limit of accuracy on an indirect branch trace using a multi-stage predictor with an unlimited hardware budget. We then investigate practical cascaded predictors with limited tables and a small number of stages. Compared to two-level prediction, multi-stage cascaded prediction delivers superior prediction accuracy for any given total table entry budget we considered. In particular, a 512-entry three-stage cascaded predictor reaches 92% accuracy, reducing table size by a factor of four compared to a two-level predictor. At 1.5K entries, a three-stage predictor reaches 94% accuracy, the hit rate of a hypothetical two-level predictor with an unlimited, fully associative predictor table. These results indicate that highly accurate indirect branch target prediction is now well within the capability of current hardware technology.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540664437</identifier><identifier>ISBN: 3540664432</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354048311X</identifier><identifier>EISBN: 9783540483113</identifier><identifier>DOI: 10.1007/3-540-48311-X_186</identifier><identifier>OCLC: 958523161</identifier><identifier>LCCallNum: QA76.9.A73QA76.9.S8</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Branch Prediction ; Branch Predictor ; Branch Target ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Language processing and microprogramming ; Longe Path Length ; Software ; Table Entry</subject><ispartof>Euro-Par'99 Parallel Processing, 1999, p.1312-1321</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-451e14161e6160d124db212b2f7214d212a4c5e0b0f60b0e414bd9d718b1ef553</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071668-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48311-X_186$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48311-X_186$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1826836$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Giraud, Luc</contributor><contributor>Goos, Gerhard</contributor><contributor>Hartmanis, Juris</contributor><contributor>Ruiz, Daniel</contributor><contributor>Fraysse, Valerie</contributor><contributor>van Leeuwen, Jan</contributor><contributor>Duff, Iain</contributor><contributor>Giraud, Luc</contributor><contributor>Berger, Philippe</contributor><contributor>Ruiz, Daniel</contributor><contributor>Duff, Iain</contributor><contributor>Daydé, Michel</contributor><contributor>Amestoy, Patrick</contributor><contributor>Frayssé, Valérie</contributor><creatorcontrib>Driesen, Karel</creatorcontrib><creatorcontrib>Hölzle, Urs</creatorcontrib><title>Multi-stage Cascaded Prediction</title><title>Euro-Par'99 Parallel Processing</title><description>Two-level predictors deliver highly accurate conditional branch prediction, indirect branch target prediction and value prediction. Accurate prediction enables speculative execution of instructions, a technique that increases instruction level parallelism. Unfortunately, the accuracy of a two level predictor is limited by the cost of the predictor table that stores associations between history patterns and target predictions. Two-stage cascaded prediction, a recently proposed hybrid prediction architecture, uses pattern filtering to reduce the cost of this table while preserving prediction accuracy. In this study we generalize two-stage prediction to multi-stage prediction. We first determine the limit of accuracy on an indirect branch trace using a multi-stage predictor with an unlimited hardware budget. We then investigate practical cascaded predictors with limited tables and a small number of stages. Compared to two-level prediction, multi-stage cascaded prediction delivers superior prediction accuracy for any given total table entry budget we considered. In particular, a 512-entry three-stage cascaded predictor reaches 92% accuracy, reducing table size by a factor of four compared to a two-level predictor. At 1.5K entries, a three-stage predictor reaches 94% accuracy, the hit rate of a hypothetical two-level predictor with an unlimited, fully associative predictor table. These results indicate that highly accurate indirect branch target prediction is now well within the capability of current hardware technology.</description><subject>Applied sciences</subject><subject>Branch Prediction</subject><subject>Branch Predictor</subject><subject>Branch Target</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Language processing and microprogramming</subject><subject>Longe Path Length</subject><subject>Software</subject><subject>Table Entry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540664437</isbn><isbn>3540664432</isbn><isbn>354048311X</isbn><isbn>9783540483113</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUEtTwyAQxucYa3-AJ3vwimVZIOHodHzN1NGDzvTGkEBqNCYV0oP_XtK6B3ZnvwfwEXIJ7AYYy-dIpWBUFAhAVwYKdUDOMa12m9UhyUAlBFHoIzLVeTFiSgmB-THJGDJOdS7wlGRaFpJjYp-RaYyfLBVyrrXKyNXzth0aGge79rOFjZV13s1eg3dNNTR9d0FOattGP_3vE_J-f_e2eKTLl4enxe2SVqhgoEKCB5Fu8AoUc8CFKznwktc5B-HSaEUlPStZrdLhBYjSaZdDUYKvpcQJud77bsY3tHWwXdVEswnNtw2_6fNcFagSbb6nxYR0ax9M2fdf0QAzY2QGTcrA7AIyu8iSQv4bh_5n6-Ng_CipfDcE21YfdjP4EA2yHJQqDOjkhALwD_vkZw0</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Driesen, Karel</creator><creator>Hölzle, Urs</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Multi-stage Cascaded Prediction</title><author>Driesen, Karel ; Hölzle, Urs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-451e14161e6160d124db212b2f7214d212a4c5e0b0f60b0e414bd9d718b1ef553</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Branch Prediction</topic><topic>Branch Predictor</topic><topic>Branch Target</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Language processing and microprogramming</topic><topic>Longe Path Length</topic><topic>Software</topic><topic>Table Entry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Driesen, Karel</creatorcontrib><creatorcontrib>Hölzle, Urs</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Driesen, Karel</au><au>Hölzle, Urs</au><au>Giraud, Luc</au><au>Goos, Gerhard</au><au>Hartmanis, Juris</au><au>Ruiz, Daniel</au><au>Fraysse, Valerie</au><au>van Leeuwen, Jan</au><au>Duff, Iain</au><au>Giraud, Luc</au><au>Berger, Philippe</au><au>Ruiz, Daniel</au><au>Duff, Iain</au><au>Daydé, Michel</au><au>Amestoy, Patrick</au><au>Frayssé, Valérie</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multi-stage Cascaded Prediction</atitle><btitle>Euro-Par'99 Parallel Processing</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><spage>1312</spage><epage>1321</epage><pages>1312-1321</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540664437</isbn><isbn>3540664432</isbn><eisbn>354048311X</eisbn><eisbn>9783540483113</eisbn><abstract>Two-level predictors deliver highly accurate conditional branch prediction, indirect branch target prediction and value prediction. Accurate prediction enables speculative execution of instructions, a technique that increases instruction level parallelism. Unfortunately, the accuracy of a two level predictor is limited by the cost of the predictor table that stores associations between history patterns and target predictions. Two-stage cascaded prediction, a recently proposed hybrid prediction architecture, uses pattern filtering to reduce the cost of this table while preserving prediction accuracy. In this study we generalize two-stage prediction to multi-stage prediction. We first determine the limit of accuracy on an indirect branch trace using a multi-stage predictor with an unlimited hardware budget. We then investigate practical cascaded predictors with limited tables and a small number of stages. Compared to two-level prediction, multi-stage cascaded prediction delivers superior prediction accuracy for any given total table entry budget we considered. In particular, a 512-entry three-stage cascaded predictor reaches 92% accuracy, reducing table size by a factor of four compared to a two-level predictor. At 1.5K entries, a three-stage predictor reaches 94% accuracy, the hit rate of a hypothetical two-level predictor with an unlimited, fully associative predictor table. These results indicate that highly accurate indirect branch target prediction is now well within the capability of current hardware technology.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48311-X_186</doi><oclcid>958523161</oclcid><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Euro-Par'99 Parallel Processing, 1999, p.1312-1321
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1826836
source Springer Books
subjects Applied sciences
Branch Prediction
Branch Predictor
Branch Target
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Language processing and microprogramming
Longe Path Length
Software
Table Entry
title Multi-stage Cascaded Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multi-stage%20Cascaded%20Prediction&rft.btitle=Euro-Par'99%20Parallel%20Processing&rft.au=Driesen,%20Karel&rft.date=1999&rft.spage=1312&rft.epage=1321&rft.pages=1312-1321&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540664437&rft.isbn_list=3540664432&rft_id=info:doi/10.1007/3-540-48311-X_186&rft_dat=%3Cproquest_pasca%3EEBC3071668_190_1341%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354048311X&rft.eisbn_list=9783540483113&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071668_190_1341&rft_id=info:pmid/&rfr_iscdi=true