The Analysis of Head Injury Data Using Decision Tree Techniques
Predicting the outcome of seriously ill patients is a challenging problem for clinicians. One alternative to clinical trials is to analyse existing patient data in an attempt to predict the several outcomes, and to suggest therapies. In this paper we use decision tree techniques to predict the outco...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 336 |
container_title | |
container_volume | |
creator | McQuatt, A. Andrews, P. J. D. Sleeman, D. Corruble, V. Jones, P. A. |
description | Predicting the outcome of seriously ill patients is a challenging problem for clinicians. One alternative to clinical trials is to analyse existing patient data in an attempt to predict the several outcomes, and to suggest therapies. In this paper we use decision tree techniques to predict the outcome of head injury patients. The work is based on patient data from the Edinburgh Royal Infirmary which contains both background (demographic) data and temporal (physiological) data. |
doi_str_mv | 10.1007/3-540-48720-4_36 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_pascalfrancis_primary_1824887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072744_41_332</sourcerecordid><originalsourceid>FETCH-LOGICAL-h301t-5ed8f41661fe32cc3184acc09db3d254568692a4faf173d62ef6342ab2118db43</originalsourceid><addsrcrecordid>eNo9UD1v2zAQZT8RN_XekUOXDEp5vOOHpsJI2jqAgS7OTNAUFSlVJZdUCvjfl4qD3nAHvHvv4e4x9gnENQhhvmClSFRkjSzdoX7FPmBBngF6zVagASpEqt-wdW3sstMatDRv2UqgkFVtCN-zVa2skgQKL9g650dRCiUQ1Cv2dd9Fvhn9cMp95lPLt9E3_G58fEonfutnz-9zPz7w2xj63E8j36cY-T6Gbuz_PMX8kb1r_ZDj-mVesvvv3_Y322r388fdzWZXdShgrlRsbEtQrmsjyhAQLPkQRN0csJGKlLa6lp5a34LBRsvYaiTpDxLANgfCS3Z19u384I6p_-3TyU2-d9vNzi2YAGWQUP2Fwv185h59Dn5okx_L8f9VYCVZawrt-kzLZTM-xOQO0_QrOxBuSd-hK3m657Ddkn4R4ItvmpbfZxcXRYjjnPwQOn-cY8oOhZGGyBE4RIn_AGzjfz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>EBC3072744_41_332</pqid></control><display><type>conference_proceeding</type><title>The Analysis of Head Injury Data Using Decision Tree Techniques</title><source>Springer Books</source><creator>McQuatt, A. ; Andrews, P. J. D. ; Sleeman, D. ; Corruble, V. ; Jones, P. A.</creator><contributor>Goos, G ; Hartmanis, J ; van Leeuwen, J ; Wyatt, Jeremy ; Andreassen, Steen</contributor><creatorcontrib>McQuatt, A. ; Andrews, P. J. D. ; Sleeman, D. ; Corruble, V. ; Jones, P. A. ; Goos, G ; Hartmanis, J ; van Leeuwen, J ; Wyatt, Jeremy ; Andreassen, Steen</creatorcontrib><description>Predicting the outcome of seriously ill patients is a challenging problem for clinicians. One alternative to clinical trials is to analyse existing patient data in an attempt to predict the several outcomes, and to suggest therapies. In this paper we use decision tree techniques to predict the outcome of head injury patients. The work is based on patient data from the Edinburgh Royal Infirmary which contains both background (demographic) data and temporal (physiological) data.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540661627</identifier><identifier>ISBN: 354066162X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540487204</identifier><identifier>EISBN: 9783540487203</identifier><identifier>DOI: 10.1007/3-540-48720-4_36</identifier><identifier>OCLC: 958524153</identifier><identifier>LCCallNum: R-RZQ334-342TJ210.2</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Biological and medical sciences ; Cerebral Perfusion Pressure ; Computer Science ; Decision Tree ; Head Injury ; Injuries of the nervous system and the skull. Diseases due to physical agents ; Injury Severity Score ; Medical sciences ; Predictive Accuracy ; Traumas. Diseases due to physical agents</subject><ispartof>AIMDM 1999 - Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, 1999, p.336-345</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>1999 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3543-5309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072744-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48720-4_36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48720-4_36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,881,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1824887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01573435$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Goos, G</contributor><contributor>Hartmanis, J</contributor><contributor>van Leeuwen, J</contributor><contributor>Wyatt, Jeremy</contributor><contributor>Andreassen, Steen</contributor><creatorcontrib>McQuatt, A.</creatorcontrib><creatorcontrib>Andrews, P. J. D.</creatorcontrib><creatorcontrib>Sleeman, D.</creatorcontrib><creatorcontrib>Corruble, V.</creatorcontrib><creatorcontrib>Jones, P. A.</creatorcontrib><title>The Analysis of Head Injury Data Using Decision Tree Techniques</title><title>AIMDM 1999 - Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making</title><description>Predicting the outcome of seriously ill patients is a challenging problem for clinicians. One alternative to clinical trials is to analyse existing patient data in an attempt to predict the several outcomes, and to suggest therapies. In this paper we use decision tree techniques to predict the outcome of head injury patients. The work is based on patient data from the Edinburgh Royal Infirmary which contains both background (demographic) data and temporal (physiological) data.</description><subject>Biological and medical sciences</subject><subject>Cerebral Perfusion Pressure</subject><subject>Computer Science</subject><subject>Decision Tree</subject><subject>Head Injury</subject><subject>Injuries of the nervous system and the skull. Diseases due to physical agents</subject><subject>Injury Severity Score</subject><subject>Medical sciences</subject><subject>Predictive Accuracy</subject><subject>Traumas. Diseases due to physical agents</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540661627</isbn><isbn>354066162X</isbn><isbn>3540487204</isbn><isbn>9783540487203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9UD1v2zAQZT8RN_XekUOXDEp5vOOHpsJI2jqAgS7OTNAUFSlVJZdUCvjfl4qD3nAHvHvv4e4x9gnENQhhvmClSFRkjSzdoX7FPmBBngF6zVagASpEqt-wdW3sstMatDRv2UqgkFVtCN-zVa2skgQKL9g650dRCiUQ1Cv2dd9Fvhn9cMp95lPLt9E3_G58fEonfutnz-9zPz7w2xj63E8j36cY-T6Gbuz_PMX8kb1r_ZDj-mVesvvv3_Y322r388fdzWZXdShgrlRsbEtQrmsjyhAQLPkQRN0csJGKlLa6lp5a34LBRsvYaiTpDxLANgfCS3Z19u384I6p_-3TyU2-d9vNzi2YAGWQUP2Fwv185h59Dn5okx_L8f9VYCVZawrt-kzLZTM-xOQO0_QrOxBuSd-hK3m657Ddkn4R4ItvmpbfZxcXRYjjnPwQOn-cY8oOhZGGyBE4RIn_AGzjfz4</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>McQuatt, A.</creator><creator>Andrews, P. J. D.</creator><creator>Sleeman, D.</creator><creator>Corruble, V.</creator><creator>Jones, P. A.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3543-5309</orcidid></search><sort><creationdate>1999</creationdate><title>The Analysis of Head Injury Data Using Decision Tree Techniques</title><author>McQuatt, A. ; Andrews, P. J. D. ; Sleeman, D. ; Corruble, V. ; Jones, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h301t-5ed8f41661fe32cc3184acc09db3d254568692a4faf173d62ef6342ab2118db43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Cerebral Perfusion Pressure</topic><topic>Computer Science</topic><topic>Decision Tree</topic><topic>Head Injury</topic><topic>Injuries of the nervous system and the skull. Diseases due to physical agents</topic><topic>Injury Severity Score</topic><topic>Medical sciences</topic><topic>Predictive Accuracy</topic><topic>Traumas. Diseases due to physical agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McQuatt, A.</creatorcontrib><creatorcontrib>Andrews, P. J. D.</creatorcontrib><creatorcontrib>Sleeman, D.</creatorcontrib><creatorcontrib>Corruble, V.</creatorcontrib><creatorcontrib>Jones, P. A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McQuatt, A.</au><au>Andrews, P. J. D.</au><au>Sleeman, D.</au><au>Corruble, V.</au><au>Jones, P. A.</au><au>Goos, G</au><au>Hartmanis, J</au><au>van Leeuwen, J</au><au>Wyatt, Jeremy</au><au>Andreassen, Steen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Analysis of Head Injury Data Using Decision Tree Techniques</atitle><btitle>AIMDM 1999 - Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making</btitle><date>1999</date><risdate>1999</risdate><spage>336</spage><epage>345</epage><pages>336-345</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540661627</isbn><isbn>354066162X</isbn><eisbn>3540487204</eisbn><eisbn>9783540487203</eisbn><abstract>Predicting the outcome of seriously ill patients is a challenging problem for clinicians. One alternative to clinical trials is to analyse existing patient data in an attempt to predict the several outcomes, and to suggest therapies. In this paper we use decision tree techniques to predict the outcome of head injury patients. The work is based on patient data from the Edinburgh Royal Infirmary which contains both background (demographic) data and temporal (physiological) data.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48720-4_36</doi><oclcid>958524153</oclcid><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3543-5309</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | AIMDM 1999 - Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, 1999, p.336-345 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1824887 |
source | Springer Books |
subjects | Biological and medical sciences Cerebral Perfusion Pressure Computer Science Decision Tree Head Injury Injuries of the nervous system and the skull. Diseases due to physical agents Injury Severity Score Medical sciences Predictive Accuracy Traumas. Diseases due to physical agents |
title | The Analysis of Head Injury Data Using Decision Tree Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Analysis%20of%20Head%20Injury%20Data%20Using%20Decision%20Tree%20Techniques&rft.btitle=AIMDM%201999%20-%20Joint%20European%20Conference%20on%20Artificial%20Intelligence%20in%20Medicine%20and%20Medical%20Decision%20Making&rft.au=McQuatt,%20A.&rft.date=1999&rft.spage=336&rft.epage=345&rft.pages=336-345&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540661627&rft.isbn_list=354066162X&rft_id=info:doi/10.1007/3-540-48720-4_36&rft_dat=%3Cproquest_hal_p%3EEBC3072744_41_332%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540487204&rft.eisbn_list=9783540487203&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072744_41_332&rft_id=info:pmid/&rfr_iscdi=true |