Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms
This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition asses...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2006-10, Vol.42 (10), p.3434-3436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3436 |
---|---|
container_issue | 10 |
container_start_page | 3434 |
container_title | IEEE transactions on magnetics |
container_volume | 42 |
creator | Mohammed, O.A. Abed, N.Y. Ganu, S. |
description | This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals |
doi_str_mv | 10.1109/TMAG.2006.879091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18203568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1704651</ieee_id><sourcerecordid>2341528701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</originalsourceid><addsrcrecordid>eNpdkcFrFDEUxoMouFbvgpdBEE-zJplMJjmWtdsWunjZ4jG8zbzRlGxSk0xB__pmuoWCp_Dl_b6Pl3yEfGR0zRjV3_a788s1p1Su1aCpZq_IimnB2nqjX5MVpUy1WkjxlrzL-a5K0TO6IvMujuhd-NVAGJvNb0hgCyb3D4qLoYlTcx3G2T6JXSwxVV3nAXyzhdmX3Nzmxb11wRVsLzweMZSnsO8u24QFm5_wgB5Ls08Q8hTTMb8nbybwGT88n2fkdnux31y1Nz8urzfnN60VTJV2RNWrkQvJuerZQRxAWAChJYqhk9M4DWo8yB44PQjWacl4h0oCnazkPRW2OyNfT7n3Kf6ZMRdzrEuh9xAwztloJmQvVMcr-fk_8i7OyzOzUQsiBk4rRE-QTTHnhJO5T-4I6a9h1CwtmKUFs7RgTi1Uy5fnXMgW_FS_wLr84lM1tpeqcp9OnEPEl_FA64KsewSoVZB9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865484720</pqid></control><display><type>article</type><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</creator><creatorcontrib>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</creatorcontrib><description>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.879091</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Circuit faults ; Coupling circuits ; Cross-disciplinary physics: materials science; rheology ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Electrical fault detection ; Exact sciences and technology ; Fault diagnosis ; Faults ; Finite element method ; Finite element methods ; induction machines ; Induction motors ; internal faults ; Magnetism ; Materials science ; Mathematical analysis ; Mathematical models ; Other topics in materials science ; Physics ; Representations ; Rotors ; Stators ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3434-3436</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</citedby><cites>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1704651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1704651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18203568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Abed, N.Y.</creatorcontrib><creatorcontrib>Ganu, S.</creatorcontrib><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</description><subject>Circuit faults</subject><subject>Coupling circuits</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Electrical fault detection</subject><subject>Exact sciences and technology</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>induction machines</subject><subject>Induction motors</subject><subject>internal faults</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Representations</subject><subject>Rotors</subject><subject>Stators</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFrFDEUxoMouFbvgpdBEE-zJplMJjmWtdsWunjZ4jG8zbzRlGxSk0xB__pmuoWCp_Dl_b6Pl3yEfGR0zRjV3_a788s1p1Su1aCpZq_IimnB2nqjX5MVpUy1WkjxlrzL-a5K0TO6IvMujuhd-NVAGJvNb0hgCyb3D4qLoYlTcx3G2T6JXSwxVV3nAXyzhdmX3Nzmxb11wRVsLzweMZSnsO8u24QFm5_wgB5Ls08Q8hTTMb8nbybwGT88n2fkdnux31y1Nz8urzfnN60VTJV2RNWrkQvJuerZQRxAWAChJYqhk9M4DWo8yB44PQjWacl4h0oCnazkPRW2OyNfT7n3Kf6ZMRdzrEuh9xAwztloJmQvVMcr-fk_8i7OyzOzUQsiBk4rRE-QTTHnhJO5T-4I6a9h1CwtmKUFs7RgTi1Uy5fnXMgW_FS_wLr84lM1tpeqcp9OnEPEl_FA64KsewSoVZB9</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Mohammed, O.A.</creator><creator>Abed, N.Y.</creator><creator>Ganu, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><author>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Circuit faults</topic><topic>Coupling circuits</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Electrical fault detection</topic><topic>Exact sciences and technology</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>induction machines</topic><topic>Induction motors</topic><topic>internal faults</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Representations</topic><topic>Rotors</topic><topic>Stators</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Abed, N.Y.</creatorcontrib><creatorcontrib>Ganu, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, O.A.</au><au>Abed, N.Y.</au><au>Ganu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>42</volume><issue>10</issue><spage>3434</spage><epage>3436</epage><pages>3434-3436</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.879091</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3434-3436 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_pascalfrancis_primary_18203568 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit faults Coupling circuits Cross-disciplinary physics: materials science rheology Discrete Wavelet Transform Discrete wavelet transforms Electrical fault detection Exact sciences and technology Fault diagnosis Faults Finite element method Finite element methods induction machines Induction motors internal faults Magnetism Materials science Mathematical analysis Mathematical models Other topics in materials science Physics Representations Rotors Stators Voltage |
title | Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Characterization%20of%20Induction%20Motor%20Internal%20Faults%20Using%20Finite-Element%20and%20Discrete%20Wavelet%20Transforms&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Mohammed,%20O.A.&rft.date=2006-10-01&rft.volume=42&rft.issue=10&rft.spage=3434&rft.epage=3436&rft.pages=3434-3436&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.879091&rft_dat=%3Cproquest_RIE%3E2341528701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865484720&rft_id=info:pmid/&rft_ieee_id=1704651&rfr_iscdi=true |