Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms

This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition asses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2006-10, Vol.42 (10), p.3434-3436
Hauptverfasser: Mohammed, O.A., Abed, N.Y., Ganu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3436
container_issue 10
container_start_page 3434
container_title IEEE transactions on magnetics
container_volume 42
creator Mohammed, O.A.
Abed, N.Y.
Ganu, S.
description This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals
doi_str_mv 10.1109/TMAG.2006.879091
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18203568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1704651</ieee_id><sourcerecordid>2341528701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</originalsourceid><addsrcrecordid>eNpdkcFrFDEUxoMouFbvgpdBEE-zJplMJjmWtdsWunjZ4jG8zbzRlGxSk0xB__pmuoWCp_Dl_b6Pl3yEfGR0zRjV3_a788s1p1Su1aCpZq_IimnB2nqjX5MVpUy1WkjxlrzL-a5K0TO6IvMujuhd-NVAGJvNb0hgCyb3D4qLoYlTcx3G2T6JXSwxVV3nAXyzhdmX3Nzmxb11wRVsLzweMZSnsO8u24QFm5_wgB5Ls08Q8hTTMb8nbybwGT88n2fkdnux31y1Nz8urzfnN60VTJV2RNWrkQvJuerZQRxAWAChJYqhk9M4DWo8yB44PQjWacl4h0oCnazkPRW2OyNfT7n3Kf6ZMRdzrEuh9xAwztloJmQvVMcr-fk_8i7OyzOzUQsiBk4rRE-QTTHnhJO5T-4I6a9h1CwtmKUFs7RgTi1Uy5fnXMgW_FS_wLr84lM1tpeqcp9OnEPEl_FA64KsewSoVZB9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865484720</pqid></control><display><type>article</type><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</creator><creatorcontrib>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</creatorcontrib><description>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2006.879091</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Circuit faults ; Coupling circuits ; Cross-disciplinary physics: materials science; rheology ; Discrete Wavelet Transform ; Discrete wavelet transforms ; Electrical fault detection ; Exact sciences and technology ; Fault diagnosis ; Faults ; Finite element method ; Finite element methods ; induction machines ; Induction motors ; internal faults ; Magnetism ; Materials science ; Mathematical analysis ; Mathematical models ; Other topics in materials science ; Physics ; Representations ; Rotors ; Stators ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3434-3436</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</citedby><cites>FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1704651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1704651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18203568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Abed, N.Y.</creatorcontrib><creatorcontrib>Ganu, S.</creatorcontrib><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</description><subject>Circuit faults</subject><subject>Coupling circuits</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Electrical fault detection</subject><subject>Exact sciences and technology</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>induction machines</subject><subject>Induction motors</subject><subject>internal faults</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Representations</subject><subject>Rotors</subject><subject>Stators</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFrFDEUxoMouFbvgpdBEE-zJplMJjmWtdsWunjZ4jG8zbzRlGxSk0xB__pmuoWCp_Dl_b6Pl3yEfGR0zRjV3_a788s1p1Su1aCpZq_IimnB2nqjX5MVpUy1WkjxlrzL-a5K0TO6IvMujuhd-NVAGJvNb0hgCyb3D4qLoYlTcx3G2T6JXSwxVV3nAXyzhdmX3Nzmxb11wRVsLzweMZSnsO8u24QFm5_wgB5Ls08Q8hTTMb8nbybwGT88n2fkdnux31y1Nz8urzfnN60VTJV2RNWrkQvJuerZQRxAWAChJYqhk9M4DWo8yB44PQjWacl4h0oCnazkPRW2OyNfT7n3Kf6ZMRdzrEuh9xAwztloJmQvVMcr-fk_8i7OyzOzUQsiBk4rRE-QTTHnhJO5T-4I6a9h1CwtmKUFs7RgTi1Uy5fnXMgW_FS_wLr84lM1tpeqcp9OnEPEl_FA64KsewSoVZB9</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Mohammed, O.A.</creator><creator>Abed, N.Y.</creator><creator>Ganu, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</title><author>Mohammed, O.A. ; Abed, N.Y. ; Ganu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-de858d24622851b4ba4caa496e4736fdf78db65a20b41396123e86a0fc62504c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Circuit faults</topic><topic>Coupling circuits</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Electrical fault detection</topic><topic>Exact sciences and technology</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>induction machines</topic><topic>Induction motors</topic><topic>internal faults</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Representations</topic><topic>Rotors</topic><topic>Stators</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammed, O.A.</creatorcontrib><creatorcontrib>Abed, N.Y.</creatorcontrib><creatorcontrib>Ganu, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammed, O.A.</au><au>Abed, N.Y.</au><au>Ganu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>42</volume><issue>10</issue><spage>3434</spage><epage>3436</epage><pages>3434-3436</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper examines the behavior of a three-phase induction motors with internal fault conditions under sinusoidal and nonsinusoidal supply voltages. This includes two types of faults, rotor broken bar and stator faults. Early detection and diagnosis of these faults are desirable for condition assessment, maintenance schedule, and improved operational efficiency of induction motors. The terminal behavior of the induction motor was investigated by coupling the induction motor transient finite-element (FE) model and external electric circuit. Such a model would allow the efficient representation of the induction machine with internal faults. A discrete wavelet transform (DWT) was then used to extract the different harmonic components of the stator currents. The key advantages of the DWT are its ability to provide a local representation (in both time and frequency) of the current signal for normal and faulty modes, and its applicability to nonstationary signals</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2006.879091</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2006-10, Vol.42 (10), p.3434-3436
issn 0018-9464
1941-0069
language eng
recordid cdi_pascalfrancis_primary_18203568
source IEEE Electronic Library (IEL)
subjects Circuit faults
Coupling circuits
Cross-disciplinary physics: materials science
rheology
Discrete Wavelet Transform
Discrete wavelet transforms
Electrical fault detection
Exact sciences and technology
Fault diagnosis
Faults
Finite element method
Finite element methods
induction machines
Induction motors
internal faults
Magnetism
Materials science
Mathematical analysis
Mathematical models
Other topics in materials science
Physics
Representations
Rotors
Stators
Voltage
title Modeling and Characterization of Induction Motor Internal Faults Using Finite-Element and Discrete Wavelet Transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Characterization%20of%20Induction%20Motor%20Internal%20Faults%20Using%20Finite-Element%20and%20Discrete%20Wavelet%20Transforms&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Mohammed,%20O.A.&rft.date=2006-10-01&rft.volume=42&rft.issue=10&rft.spage=3434&rft.epage=3436&rft.pages=3434-3436&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2006.879091&rft_dat=%3Cproquest_RIE%3E2341528701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865484720&rft_id=info:pmid/&rft_ieee_id=1704651&rfr_iscdi=true