Finding symmetric orthogonal Gough-Stewart platforms
This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2006-10, Vol.22 (5), p.880-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 889 |
---|---|
container_issue | 5 |
container_start_page | 880 |
container_title | IEEE transactions on robotics |
container_volume | 22 |
creator | McInroy, J.E. Jafari, F. |
description | This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms |
doi_str_mv | 10.1109/TRO.2006.878975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18186589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705580</ieee_id><sourcerecordid>907974497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFbPHrzkIp7Szn5kP45SbBUKBa3nZbPZbSNJtu6mSP-9KS30NAPzvC_Dg9AjhgnGoKbrz9WEAPCJFFKJ4gqNsGI4B8bl9bAXBckpKHmL7lL6ASBMAR0hNq-7qu42WTq0retjbbMQ-23YhM402SLsN9v8q3d_JvbZrjG9D7FN9-jGmya5h_Mco-_523r2ni9Xi4_Z6zK3lNA-VwyY9cICprS0ghrHjXWk4lR4ULbyomTSEUY4qypSUgumBIe95a7kfHhvjF5OvbsYfvcu9bqtk3VNYzoX9kkrEEowpsRATk-kjSGl6Lzexbo18aAx6KMePejRRz36pGdIPJ-7TbKm8dF0tk6XmMSSF1IN3NOJq51zl7OAopBA_wHzkW5G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907974497</pqid></control><display><type>article</type><title>Finding symmetric orthogonal Gough-Stewart platforms</title><source>IEEE Electronic Library (IEL)</source><creator>McInroy, J.E. ; Jafari, F.</creator><creatorcontrib>McInroy, J.E. ; Jafari, F.</creatorcontrib><description>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2006.878975</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace simulation ; Applied sciences ; Cartesian ; Cleaning ; Computer science; control theory; systems ; Control theory. Systems ; Equations ; Exact sciences and technology ; Geometry ; Gough-Stewart platforms (GSPs) ; Isolators ; Linear matrix inequalities ; Machining ; Mathematical analysis ; Mathematical models ; micro-manipulation ; Miscellaneous ; Motion control ; orthogonal Gough-Stewart platforms (OGSPs) ; Parallel machines ; parallel manipulators ; Payloads ; Platforms ; precision motion control ; Robotics ; Searching ; Stiffness matrices ; Surgery ; Symmetry</subject><ispartof>IEEE transactions on robotics, 2006-10, Vol.22 (5), p.880-889</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</citedby><cites>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18186589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McInroy, J.E.</creatorcontrib><creatorcontrib>Jafari, F.</creatorcontrib><title>Finding symmetric orthogonal Gough-Stewart platforms</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</description><subject>Aerospace simulation</subject><subject>Applied sciences</subject><subject>Cartesian</subject><subject>Cleaning</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Gough-Stewart platforms (GSPs)</subject><subject>Isolators</subject><subject>Linear matrix inequalities</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>micro-manipulation</subject><subject>Miscellaneous</subject><subject>Motion control</subject><subject>orthogonal Gough-Stewart platforms (OGSPs)</subject><subject>Parallel machines</subject><subject>parallel manipulators</subject><subject>Payloads</subject><subject>Platforms</subject><subject>precision motion control</subject><subject>Robotics</subject><subject>Searching</subject><subject>Stiffness matrices</subject><subject>Surgery</subject><subject>Symmetry</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhhdRsFbPHrzkIp7Szn5kP45SbBUKBa3nZbPZbSNJtu6mSP-9KS30NAPzvC_Dg9AjhgnGoKbrz9WEAPCJFFKJ4gqNsGI4B8bl9bAXBckpKHmL7lL6ASBMAR0hNq-7qu42WTq0retjbbMQ-23YhM402SLsN9v8q3d_JvbZrjG9D7FN9-jGmya5h_Mco-_523r2ni9Xi4_Z6zK3lNA-VwyY9cICprS0ghrHjXWk4lR4ULbyomTSEUY4qypSUgumBIe95a7kfHhvjF5OvbsYfvcu9bqtk3VNYzoX9kkrEEowpsRATk-kjSGl6Lzexbo18aAx6KMePejRRz36pGdIPJ-7TbKm8dF0tk6XmMSSF1IN3NOJq51zl7OAopBA_wHzkW5G</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>McInroy, J.E.</creator><creator>Jafari, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061001</creationdate><title>Finding symmetric orthogonal Gough-Stewart platforms</title><author>McInroy, J.E. ; Jafari, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aerospace simulation</topic><topic>Applied sciences</topic><topic>Cartesian</topic><topic>Cleaning</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Gough-Stewart platforms (GSPs)</topic><topic>Isolators</topic><topic>Linear matrix inequalities</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>micro-manipulation</topic><topic>Miscellaneous</topic><topic>Motion control</topic><topic>orthogonal Gough-Stewart platforms (OGSPs)</topic><topic>Parallel machines</topic><topic>parallel manipulators</topic><topic>Payloads</topic><topic>Platforms</topic><topic>precision motion control</topic><topic>Robotics</topic><topic>Searching</topic><topic>Stiffness matrices</topic><topic>Surgery</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McInroy, J.E.</creatorcontrib><creatorcontrib>Jafari, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McInroy, J.E.</au><au>Jafari, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding symmetric orthogonal Gough-Stewart platforms</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>22</volume><issue>5</issue><spage>880</spage><epage>889</epage><pages>880-889</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2006.878975</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2006-10, Vol.22 (5), p.880-889 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_pascalfrancis_primary_18186589 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace simulation Applied sciences Cartesian Cleaning Computer science control theory systems Control theory. Systems Equations Exact sciences and technology Geometry Gough-Stewart platforms (GSPs) Isolators Linear matrix inequalities Machining Mathematical analysis Mathematical models micro-manipulation Miscellaneous Motion control orthogonal Gough-Stewart platforms (OGSPs) Parallel machines parallel manipulators Payloads Platforms precision motion control Robotics Searching Stiffness matrices Surgery Symmetry |
title | Finding symmetric orthogonal Gough-Stewart platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20symmetric%20orthogonal%20Gough-Stewart%20platforms&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=McInroy,%20J.E.&rft.date=2006-10-01&rft.volume=22&rft.issue=5&rft.spage=880&rft.epage=889&rft.pages=880-889&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2006.878975&rft_dat=%3Cproquest_RIE%3E907974497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907974497&rft_id=info:pmid/&rft_ieee_id=1705580&rfr_iscdi=true |