Finding symmetric orthogonal Gough-Stewart platforms

This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2006-10, Vol.22 (5), p.880-889
Hauptverfasser: McInroy, J.E., Jafari, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 5
container_start_page 880
container_title IEEE transactions on robotics
container_volume 22
creator McInroy, J.E.
Jafari, F.
description This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms
doi_str_mv 10.1109/TRO.2006.878975
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18186589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705580</ieee_id><sourcerecordid>907974497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsFbPHrzkIp7Szn5kP45SbBUKBa3nZbPZbSNJtu6mSP-9KS30NAPzvC_Dg9AjhgnGoKbrz9WEAPCJFFKJ4gqNsGI4B8bl9bAXBckpKHmL7lL6ASBMAR0hNq-7qu42WTq0retjbbMQ-23YhM402SLsN9v8q3d_JvbZrjG9D7FN9-jGmya5h_Mco-_523r2ni9Xi4_Z6zK3lNA-VwyY9cICprS0ghrHjXWk4lR4ULbyomTSEUY4qypSUgumBIe95a7kfHhvjF5OvbsYfvcu9bqtk3VNYzoX9kkrEEowpsRATk-kjSGl6Lzexbo18aAx6KMePejRRz36pGdIPJ-7TbKm8dF0tk6XmMSSF1IN3NOJq51zl7OAopBA_wHzkW5G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907974497</pqid></control><display><type>article</type><title>Finding symmetric orthogonal Gough-Stewart platforms</title><source>IEEE Electronic Library (IEL)</source><creator>McInroy, J.E. ; Jafari, F.</creator><creatorcontrib>McInroy, J.E. ; Jafari, F.</creatorcontrib><description>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2006.878975</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace simulation ; Applied sciences ; Cartesian ; Cleaning ; Computer science; control theory; systems ; Control theory. Systems ; Equations ; Exact sciences and technology ; Geometry ; Gough-Stewart platforms (GSPs) ; Isolators ; Linear matrix inequalities ; Machining ; Mathematical analysis ; Mathematical models ; micro-manipulation ; Miscellaneous ; Motion control ; orthogonal Gough-Stewart platforms (OGSPs) ; Parallel machines ; parallel manipulators ; Payloads ; Platforms ; precision motion control ; Robotics ; Searching ; Stiffness matrices ; Surgery ; Symmetry</subject><ispartof>IEEE transactions on robotics, 2006-10, Vol.22 (5), p.880-889</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</citedby><cites>FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18186589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McInroy, J.E.</creatorcontrib><creatorcontrib>Jafari, F.</creatorcontrib><title>Finding symmetric orthogonal Gough-Stewart platforms</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</description><subject>Aerospace simulation</subject><subject>Applied sciences</subject><subject>Cartesian</subject><subject>Cleaning</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Gough-Stewart platforms (GSPs)</subject><subject>Isolators</subject><subject>Linear matrix inequalities</subject><subject>Machining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>micro-manipulation</subject><subject>Miscellaneous</subject><subject>Motion control</subject><subject>orthogonal Gough-Stewart platforms (OGSPs)</subject><subject>Parallel machines</subject><subject>parallel manipulators</subject><subject>Payloads</subject><subject>Platforms</subject><subject>precision motion control</subject><subject>Robotics</subject><subject>Searching</subject><subject>Stiffness matrices</subject><subject>Surgery</subject><subject>Symmetry</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1Lw0AQhhdRsFbPHrzkIp7Szn5kP45SbBUKBa3nZbPZbSNJtu6mSP-9KS30NAPzvC_Dg9AjhgnGoKbrz9WEAPCJFFKJ4gqNsGI4B8bl9bAXBckpKHmL7lL6ASBMAR0hNq-7qu42WTq0retjbbMQ-23YhM402SLsN9v8q3d_JvbZrjG9D7FN9-jGmya5h_Mco-_523r2ni9Xi4_Z6zK3lNA-VwyY9cICprS0ghrHjXWk4lR4ULbyomTSEUY4qypSUgumBIe95a7kfHhvjF5OvbsYfvcu9bqtk3VNYzoX9kkrEEowpsRATk-kjSGl6Lzexbo18aAx6KMePejRRz36pGdIPJ-7TbKm8dF0tk6XmMSSF1IN3NOJq51zl7OAopBA_wHzkW5G</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>McInroy, J.E.</creator><creator>Jafari, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061001</creationdate><title>Finding symmetric orthogonal Gough-Stewart platforms</title><author>McInroy, J.E. ; Jafari, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9404cf7c0133bc73ae6ace2d637f09cdf7b48e24264dd2b3c0ab0e1fc6eb66903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aerospace simulation</topic><topic>Applied sciences</topic><topic>Cartesian</topic><topic>Cleaning</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Gough-Stewart platforms (GSPs)</topic><topic>Isolators</topic><topic>Linear matrix inequalities</topic><topic>Machining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>micro-manipulation</topic><topic>Miscellaneous</topic><topic>Motion control</topic><topic>orthogonal Gough-Stewart platforms (OGSPs)</topic><topic>Parallel machines</topic><topic>parallel manipulators</topic><topic>Payloads</topic><topic>Platforms</topic><topic>precision motion control</topic><topic>Robotics</topic><topic>Searching</topic><topic>Stiffness matrices</topic><topic>Surgery</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McInroy, J.E.</creatorcontrib><creatorcontrib>Jafari, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McInroy, J.E.</au><au>Jafari, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding symmetric orthogonal Gough-Stewart platforms</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2006-10-01</date><risdate>2006</risdate><volume>22</volume><issue>5</issue><spage>880</spage><epage>889</epage><pages>880-889</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This paper develops new, analytical methods to find a large class of orthogonal Gough-Stewart platforms (OGSPs) having desired properties at their home position. In contrast, prior methods have been computationally intensive, relying on numerical search techniques. By exploiting symmetry, 27 equations are reduced to only two. The new techniques are directly applicable to clean-sheet design of micro-manipulators, vibration isolators, and Cartesian stiffness matrices. In addition, straightforward methods for retro-fitting existing OGSPs are illustrated. Because the new theory greatly simplifies OGSP formulas about a single point, it is expected that these results will also prove to be very useful when numerically designing gross motion platforms</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2006.878975</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2006-10, Vol.22 (5), p.880-889
issn 1552-3098
1941-0468
language eng
recordid cdi_pascalfrancis_primary_18186589
source IEEE Electronic Library (IEL)
subjects Aerospace simulation
Applied sciences
Cartesian
Cleaning
Computer science
control theory
systems
Control theory. Systems
Equations
Exact sciences and technology
Geometry
Gough-Stewart platforms (GSPs)
Isolators
Linear matrix inequalities
Machining
Mathematical analysis
Mathematical models
micro-manipulation
Miscellaneous
Motion control
orthogonal Gough-Stewart platforms (OGSPs)
Parallel machines
parallel manipulators
Payloads
Platforms
precision motion control
Robotics
Searching
Stiffness matrices
Surgery
Symmetry
title Finding symmetric orthogonal Gough-Stewart platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20symmetric%20orthogonal%20Gough-Stewart%20platforms&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=McInroy,%20J.E.&rft.date=2006-10-01&rft.volume=22&rft.issue=5&rft.spage=880&rft.epage=889&rft.pages=880-889&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2006.878975&rft_dat=%3Cproquest_RIE%3E907974497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907974497&rft_id=info:pmid/&rft_ieee_id=1705580&rfr_iscdi=true