Making Sense of Sensemaking 2: A Macrocognitive Model
For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobv...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2006-09, Vol.21 (5), p.88-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 5 |
container_start_page | 88 |
container_title | IEEE intelligent systems |
container_volume | 21 |
creator | Klein, G. Moon, B. Hoffman, R.R. |
description | For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views |
doi_str_mv | 10.1109/MIS.2006.100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18155864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705435</ieee_id><sourcerecordid>1671383006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFZv3rwEQfBg6s5-ZddbKX4UGjxUz8u6mZTUNNFsK_jfuyGFgqd5zPxmmPcIuQQ6AaDmPp8vJ4xSNQFKj8gIjIAUmBHHUcteq4ydkrMQ1pQyTkGPiMzdZ9WskiU2AZO2HMRmaLKHZJrkznetb1dNta1-MMnbAutzclK6OuDFvo7J-9Pj2-wlXbw-z2fTReq51tu0wIxCAVrqD8gMKFAGtTFeCg7GFSCYcqhUKQ0KpFnBvBGlUYoXzilwyMfkdrj71bXfOwxbu6mCx7p2Dba7YKMh4JpHyxG9_oeu213XxO8so5k0GVM9dDdA0VIIHZb2q6s2rvu1QG0foY0R2j7C2KARv9nfdMG7uuxc46tw2NEgpVYiclcDVyHiYZzRaFTyP78Tdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207597266</pqid></control><display><type>article</type><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><source>IEEE Electronic Library (IEL)</source><creator>Klein, G. ; Moon, B. ; Hoffman, R.R.</creator><creatorcontrib>Klein, G. ; Moon, B. ; Hoffman, R.R.</creatorcontrib><description>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2006.100</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; causal reasoning ; Cognition ; Cognition & reasoning ; Computer science; control theory; systems ; confirmation bias ; Costs ; Counting ; Decision making ; Empirical analysis ; Exact sciences and technology ; Feedback ; fixation bias ; Frames ; Game theory ; Human computer interaction ; Hypotheses ; Hypothesis testing ; inference-making ; Intelligent systems ; Learning ; Machine intelligence ; mental models ; Metaphors ; Moon ; Scripts ; Testing ; Theory</subject><ispartof>IEEE intelligent systems, 2006-09, Vol.21 (5), p.88-92</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep/Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</citedby><cites>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18155864$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, G.</creatorcontrib><creatorcontrib>Moon, B.</creatorcontrib><creatorcontrib>Hoffman, R.R.</creatorcontrib><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>causal reasoning</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Computer science; control theory; systems</subject><subject>confirmation bias</subject><subject>Costs</subject><subject>Counting</subject><subject>Decision making</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>fixation bias</subject><subject>Frames</subject><subject>Game theory</subject><subject>Human computer interaction</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>inference-making</subject><subject>Intelligent systems</subject><subject>Learning</subject><subject>Machine intelligence</subject><subject>mental models</subject><subject>Metaphors</subject><subject>Moon</subject><subject>Scripts</subject><subject>Testing</subject><subject>Theory</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFZv3rwEQfBg6s5-ZddbKX4UGjxUz8u6mZTUNNFsK_jfuyGFgqd5zPxmmPcIuQQ6AaDmPp8vJ4xSNQFKj8gIjIAUmBHHUcteq4ydkrMQ1pQyTkGPiMzdZ9WskiU2AZO2HMRmaLKHZJrkznetb1dNta1-MMnbAutzclK6OuDFvo7J-9Pj2-wlXbw-z2fTReq51tu0wIxCAVrqD8gMKFAGtTFeCg7GFSCYcqhUKQ0KpFnBvBGlUYoXzilwyMfkdrj71bXfOwxbu6mCx7p2Dba7YKMh4JpHyxG9_oeu213XxO8so5k0GVM9dDdA0VIIHZb2q6s2rvu1QG0foY0R2j7C2KARv9nfdMG7uuxc46tw2NEgpVYiclcDVyHiYZzRaFTyP78Tdbo</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Klein, G.</creator><creator>Moon, B.</creator><creator>Hoffman, R.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><author>Klein, G. ; Moon, B. ; Hoffman, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>causal reasoning</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Computer science; control theory; systems</topic><topic>confirmation bias</topic><topic>Costs</topic><topic>Counting</topic><topic>Decision making</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>fixation bias</topic><topic>Frames</topic><topic>Game theory</topic><topic>Human computer interaction</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>inference-making</topic><topic>Intelligent systems</topic><topic>Learning</topic><topic>Machine intelligence</topic><topic>mental models</topic><topic>Metaphors</topic><topic>Moon</topic><topic>Scripts</topic><topic>Testing</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, G.</creatorcontrib><creatorcontrib>Moon, B.</creatorcontrib><creatorcontrib>Hoffman, R.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klein, G.</au><au>Moon, B.</au><au>Hoffman, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Sense of Sensemaking 2: A Macrocognitive Model</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>21</volume><issue>5</issue><spage>88</spage><epage>92</epage><pages>88-92</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/MIS.2006.100</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2006-09, Vol.21 (5), p.88-92 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_pascalfrancis_primary_18155864 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence causal reasoning Cognition Cognition & reasoning Computer science control theory systems confirmation bias Costs Counting Decision making Empirical analysis Exact sciences and technology Feedback fixation bias Frames Game theory Human computer interaction Hypotheses Hypothesis testing inference-making Intelligent systems Learning Machine intelligence mental models Metaphors Moon Scripts Testing Theory |
title | Making Sense of Sensemaking 2: A Macrocognitive Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Sense%20of%20Sensemaking%202:%20A%20Macrocognitive%20Model&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Klein,%20G.&rft.date=2006-09-01&rft.volume=21&rft.issue=5&rft.spage=88&rft.epage=92&rft.pages=88-92&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2006.100&rft_dat=%3Cproquest_RIE%3E1671383006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207597266&rft_id=info:pmid/&rft_ieee_id=1705435&rfr_iscdi=true |