Making Sense of Sensemaking 2: A Macrocognitive Model

For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2006-09, Vol.21 (5), p.88-92
Hauptverfasser: Klein, G., Moon, B., Hoffman, R.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 5
container_start_page 88
container_title IEEE intelligent systems
container_volume 21
creator Klein, G.
Moon, B.
Hoffman, R.R.
description For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views
doi_str_mv 10.1109/MIS.2006.100
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_18155864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705435</ieee_id><sourcerecordid>1671383006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFZv3rwEQfBg6s5-ZddbKX4UGjxUz8u6mZTUNNFsK_jfuyGFgqd5zPxmmPcIuQQ6AaDmPp8vJ4xSNQFKj8gIjIAUmBHHUcteq4ydkrMQ1pQyTkGPiMzdZ9WskiU2AZO2HMRmaLKHZJrkznetb1dNta1-MMnbAutzclK6OuDFvo7J-9Pj2-wlXbw-z2fTReq51tu0wIxCAVrqD8gMKFAGtTFeCg7GFSCYcqhUKQ0KpFnBvBGlUYoXzilwyMfkdrj71bXfOwxbu6mCx7p2Dba7YKMh4JpHyxG9_oeu213XxO8so5k0GVM9dDdA0VIIHZb2q6s2rvu1QG0foY0R2j7C2KARv9nfdMG7uuxc46tw2NEgpVYiclcDVyHiYZzRaFTyP78Tdbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207597266</pqid></control><display><type>article</type><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><source>IEEE Electronic Library (IEL)</source><creator>Klein, G. ; Moon, B. ; Hoffman, R.R.</creator><creatorcontrib>Klein, G. ; Moon, B. ; Hoffman, R.R.</creatorcontrib><description>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2006.100</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; causal reasoning ; Cognition ; Cognition &amp; reasoning ; Computer science; control theory; systems ; confirmation bias ; Costs ; Counting ; Decision making ; Empirical analysis ; Exact sciences and technology ; Feedback ; fixation bias ; Frames ; Game theory ; Human computer interaction ; Hypotheses ; Hypothesis testing ; inference-making ; Intelligent systems ; Learning ; Machine intelligence ; mental models ; Metaphors ; Moon ; Scripts ; Testing ; Theory</subject><ispartof>IEEE intelligent systems, 2006-09, Vol.21 (5), p.88-92</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep/Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</citedby><cites>FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18155864$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, G.</creatorcontrib><creatorcontrib>Moon, B.</creatorcontrib><creatorcontrib>Hoffman, R.R.</creatorcontrib><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>causal reasoning</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Computer science; control theory; systems</subject><subject>confirmation bias</subject><subject>Costs</subject><subject>Counting</subject><subject>Decision making</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>fixation bias</subject><subject>Frames</subject><subject>Game theory</subject><subject>Human computer interaction</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>inference-making</subject><subject>Intelligent systems</subject><subject>Learning</subject><subject>Machine intelligence</subject><subject>mental models</subject><subject>Metaphors</subject><subject>Moon</subject><subject>Scripts</subject><subject>Testing</subject><subject>Theory</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFZv3rwEQfBg6s5-ZddbKX4UGjxUz8u6mZTUNNFsK_jfuyGFgqd5zPxmmPcIuQQ6AaDmPp8vJ4xSNQFKj8gIjIAUmBHHUcteq4ydkrMQ1pQyTkGPiMzdZ9WskiU2AZO2HMRmaLKHZJrkznetb1dNta1-MMnbAutzclK6OuDFvo7J-9Pj2-wlXbw-z2fTReq51tu0wIxCAVrqD8gMKFAGtTFeCg7GFSCYcqhUKQ0KpFnBvBGlUYoXzilwyMfkdrj71bXfOwxbu6mCx7p2Dba7YKMh4JpHyxG9_oeu213XxO8so5k0GVM9dDdA0VIIHZb2q6s2rvu1QG0foY0R2j7C2KARv9nfdMG7uuxc46tw2NEgpVYiclcDVyHiYZzRaFTyP78Tdbo</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Klein, G.</creator><creator>Moon, B.</creator><creator>Hoffman, R.R.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>Making Sense of Sensemaking 2: A Macrocognitive Model</title><author>Klein, G. ; Moon, B. ; Hoffman, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-de701d1858b17916169e899c54319ad1426ae66f59e4e07d2c94f9663daa61ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>causal reasoning</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Computer science; control theory; systems</topic><topic>confirmation bias</topic><topic>Costs</topic><topic>Counting</topic><topic>Decision making</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>fixation bias</topic><topic>Frames</topic><topic>Game theory</topic><topic>Human computer interaction</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>inference-making</topic><topic>Intelligent systems</topic><topic>Learning</topic><topic>Machine intelligence</topic><topic>mental models</topic><topic>Metaphors</topic><topic>Moon</topic><topic>Scripts</topic><topic>Testing</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, G.</creatorcontrib><creatorcontrib>Moon, B.</creatorcontrib><creatorcontrib>Hoffman, R.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klein, G.</au><au>Moon, B.</au><au>Hoffman, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making Sense of Sensemaking 2: A Macrocognitive Model</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>21</volume><issue>5</issue><spage>88</spage><epage>92</epage><pages>88-92</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>For pt.1 see ibid., vol.21, no.4, p. 70-73 (2006). In this paper, we have laid out a theory of sensemaking that might be useful for intelligent systems applications. It's a general, empirically grounded account of sensemaking that goes significantly beyond the myths and puts forward some nonobvious, testable hypotheses about the process. When people try to make sense of events, they begin with some perspective, viewpoint, or framework - however minimal. For now, let's use a metaphor and call this a frame. We can express frames in various meaningful forms, including stories, maps, organizational diagrams, or scripts, and can use them in subsequent and parallel processes. Even though frames define what count as data, they themselves actually shape the data Furthermore, frames change as we acquire data. In other words, this is a two-way street: Frames shape and define the relevant data, and data mandate that frames change in nontrivial ways. We examine five areas of empirical findings: causal reasoning, commitment to hypotheses, feedback and learning, sense-making as a skill, and confirmation bias. In each area the Data/Frame model, and the research it's based on, doesn't align with common beliefs. For that reason, the Data/Frame model cannot be considered a depiction of commonsense views</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/MIS.2006.100</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2006-09, Vol.21 (5), p.88-92
issn 1541-1672
1941-1294
language eng
recordid cdi_pascalfrancis_primary_18155864
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
causal reasoning
Cognition
Cognition & reasoning
Computer science
control theory
systems
confirmation bias
Costs
Counting
Decision making
Empirical analysis
Exact sciences and technology
Feedback
fixation bias
Frames
Game theory
Human computer interaction
Hypotheses
Hypothesis testing
inference-making
Intelligent systems
Learning
Machine intelligence
mental models
Metaphors
Moon
Scripts
Testing
Theory
title Making Sense of Sensemaking 2: A Macrocognitive Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20Sense%20of%20Sensemaking%202:%20A%20Macrocognitive%20Model&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Klein,%20G.&rft.date=2006-09-01&rft.volume=21&rft.issue=5&rft.spage=88&rft.epage=92&rft.pages=88-92&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2006.100&rft_dat=%3Cproquest_RIE%3E1671383006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207597266&rft_id=info:pmid/&rft_ieee_id=1705435&rfr_iscdi=true