Hybrid genetic algorithm for group technology economic lot scheduling problem
The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm an...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2006-11, Vol.44 (21), p.4551-4568 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4568 |
---|---|
container_issue | 21 |
container_start_page | 4551 |
container_title | International journal of production research |
container_volume | 44 |
creator | Moon, I. K. Cha, B. C. Bae, H. C. |
description | The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics. |
doi_str_mv | 10.1080/00207540500534405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18109981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1161194271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</originalsourceid><addsrcrecordid>eNqFkM1q3DAURkVoIJNJH6A7U0h2bvVjWRJkE0LSKaRkk0B2QpavPR5kayrJtPP20TBTCg2k2tyFzvnu5UPoE8FfCJb4K8YUC15hjjFnVZ4naEFYXZdcypcPaLH_LzPAztB5jBucH5fVAv1Y7ZowtEUPE6TBFsb1PgxpPRadD0Uf_LwtEtj15J3vdwVYP_kxc86nIto1tLMbpr7YBt84GC_QaWdchI_HuUTP93dPt6vy4fHb99ubh9JWrEolrTvFK1rjihlhcWuhbXDLG4CuUp1Q3NDaig44GBBCqJZyaZuGUMHbGivJlujqkJv3_pwhJj0O0YJzZgI_R00VVYwRlsHP_4AbP4cp36YpkTWnipAMkQNkg48xQKe3YRhN2GmC9b5d_abd7Fweg020xnXBTHaIf0VJsFJyn3194IYpFzqaXz64Viezcz78kdh7a8R_9TeWTr8TewV88Z7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218652911</pqid></control><display><type>article</type><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><source>EBSCOhost Business Source Complete</source><source>Taylor & Francis Journals Complete</source><creator>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</creator><creatorcontrib>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</creatorcontrib><description>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540500534405</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Economic lot scheduling problem ; Exact sciences and technology ; Genetic algorithm ; Genetic algorithms ; Group technology ; Heuristic ; Operational research and scientific management ; Operational research. Management science ; Production scheduling ; Scheduling algorithms ; Scheduling, sequencing ; Studies</subject><ispartof>International journal of production research, 2006-11, Vol.44 (21), p.4551-4568</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group Nov 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</citedby><cites>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540500534405$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540500534405$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,59634,60423</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18109981$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, I. K.</creatorcontrib><creatorcontrib>Cha, B. C.</creatorcontrib><creatorcontrib>Bae, H. C.</creatorcontrib><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><title>International journal of production research</title><description>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</description><subject>Applied sciences</subject><subject>Economic lot scheduling problem</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Group technology</subject><subject>Heuristic</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Production scheduling</subject><subject>Scheduling algorithms</subject><subject>Scheduling, sequencing</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAURkVoIJNJH6A7U0h2bvVjWRJkE0LSKaRkk0B2QpavPR5kayrJtPP20TBTCg2k2tyFzvnu5UPoE8FfCJb4K8YUC15hjjFnVZ4naEFYXZdcypcPaLH_LzPAztB5jBucH5fVAv1Y7ZowtEUPE6TBFsb1PgxpPRadD0Uf_LwtEtj15J3vdwVYP_kxc86nIto1tLMbpr7YBt84GC_QaWdchI_HuUTP93dPt6vy4fHb99ubh9JWrEolrTvFK1rjihlhcWuhbXDLG4CuUp1Q3NDaig44GBBCqJZyaZuGUMHbGivJlujqkJv3_pwhJj0O0YJzZgI_R00VVYwRlsHP_4AbP4cp36YpkTWnipAMkQNkg48xQKe3YRhN2GmC9b5d_abd7Fweg020xnXBTHaIf0VJsFJyn3194IYpFzqaXz64Viezcz78kdh7a8R_9TeWTr8TewV88Z7q</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Moon, I. K.</creator><creator>Cha, B. C.</creator><creator>Bae, H. C.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061101</creationdate><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><author>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Economic lot scheduling problem</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Group technology</topic><topic>Heuristic</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Production scheduling</topic><topic>Scheduling algorithms</topic><topic>Scheduling, sequencing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, I. K.</creatorcontrib><creatorcontrib>Cha, B. C.</creatorcontrib><creatorcontrib>Bae, H. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, I. K.</au><au>Cha, B. C.</au><au>Bae, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid genetic algorithm for group technology economic lot scheduling problem</atitle><jtitle>International journal of production research</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>44</volume><issue>21</issue><spage>4551</spage><epage>4568</epage><pages>4551-4568</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207540500534405</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2006-11, Vol.44 (21), p.4551-4568 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_pascalfrancis_primary_18109981 |
source | EBSCOhost Business Source Complete; Taylor & Francis Journals Complete |
subjects | Applied sciences Economic lot scheduling problem Exact sciences and technology Genetic algorithm Genetic algorithms Group technology Heuristic Operational research and scientific management Operational research. Management science Production scheduling Scheduling algorithms Scheduling, sequencing Studies |
title | Hybrid genetic algorithm for group technology economic lot scheduling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20genetic%20algorithm%20for%20group%20technology%20economic%20lot%20scheduling%20problem&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Moon,%20I.%20K.&rft.date=2006-11-01&rft.volume=44&rft.issue=21&rft.spage=4551&rft.epage=4568&rft.pages=4551-4568&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540500534405&rft_dat=%3Cproquest_pasca%3E1161194271%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218652911&rft_id=info:pmid/&rfr_iscdi=true |