Hybrid genetic algorithm for group technology economic lot scheduling problem

The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2006-11, Vol.44 (21), p.4551-4568
Hauptverfasser: Moon, I. K., Cha, B. C., Bae, H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4568
container_issue 21
container_start_page 4551
container_title International journal of production research
container_volume 44
creator Moon, I. K.
Cha, B. C.
Bae, H. C.
description The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.
doi_str_mv 10.1080/00207540500534405
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_18109981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1161194271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</originalsourceid><addsrcrecordid>eNqFkM1q3DAURkVoIJNJH6A7U0h2bvVjWRJkE0LSKaRkk0B2QpavPR5kayrJtPP20TBTCg2k2tyFzvnu5UPoE8FfCJb4K8YUC15hjjFnVZ4naEFYXZdcypcPaLH_LzPAztB5jBucH5fVAv1Y7ZowtEUPE6TBFsb1PgxpPRadD0Uf_LwtEtj15J3vdwVYP_kxc86nIto1tLMbpr7YBt84GC_QaWdchI_HuUTP93dPt6vy4fHb99ubh9JWrEolrTvFK1rjihlhcWuhbXDLG4CuUp1Q3NDaig44GBBCqJZyaZuGUMHbGivJlujqkJv3_pwhJj0O0YJzZgI_R00VVYwRlsHP_4AbP4cp36YpkTWnipAMkQNkg48xQKe3YRhN2GmC9b5d_abd7Fweg020xnXBTHaIf0VJsFJyn3194IYpFzqaXz64Viezcz78kdh7a8R_9TeWTr8TewV88Z7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218652911</pqid></control><display><type>article</type><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</creator><creatorcontrib>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</creatorcontrib><description>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540500534405</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Economic lot scheduling problem ; Exact sciences and technology ; Genetic algorithm ; Genetic algorithms ; Group technology ; Heuristic ; Operational research and scientific management ; Operational research. Management science ; Production scheduling ; Scheduling algorithms ; Scheduling, sequencing ; Studies</subject><ispartof>International journal of production research, 2006-11, Vol.44 (21), p.4551-4568</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Nov 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</citedby><cites>FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540500534405$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540500534405$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,59634,60423</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18109981$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, I. K.</creatorcontrib><creatorcontrib>Cha, B. C.</creatorcontrib><creatorcontrib>Bae, H. C.</creatorcontrib><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><title>International journal of production research</title><description>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</description><subject>Applied sciences</subject><subject>Economic lot scheduling problem</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Group technology</subject><subject>Heuristic</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Production scheduling</subject><subject>Scheduling algorithms</subject><subject>Scheduling, sequencing</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAURkVoIJNJH6A7U0h2bvVjWRJkE0LSKaRkk0B2QpavPR5kayrJtPP20TBTCg2k2tyFzvnu5UPoE8FfCJb4K8YUC15hjjFnVZ4naEFYXZdcypcPaLH_LzPAztB5jBucH5fVAv1Y7ZowtEUPE6TBFsb1PgxpPRadD0Uf_LwtEtj15J3vdwVYP_kxc86nIto1tLMbpr7YBt84GC_QaWdchI_HuUTP93dPt6vy4fHb99ubh9JWrEolrTvFK1rjihlhcWuhbXDLG4CuUp1Q3NDaig44GBBCqJZyaZuGUMHbGivJlujqkJv3_pwhJj0O0YJzZgI_R00VVYwRlsHP_4AbP4cp36YpkTWnipAMkQNkg48xQKe3YRhN2GmC9b5d_abd7Fweg020xnXBTHaIf0VJsFJyn3194IYpFzqaXz64Viezcz78kdh7a8R_9TeWTr8TewV88Z7q</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Moon, I. K.</creator><creator>Cha, B. C.</creator><creator>Bae, H. C.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061101</creationdate><title>Hybrid genetic algorithm for group technology economic lot scheduling problem</title><author>Moon, I. K. ; Cha, B. C. ; Bae, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-26f95426043a7c0dcedb0d5beef49f795a26c7fe5eae7779d258cbb1275d60983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Economic lot scheduling problem</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Group technology</topic><topic>Heuristic</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Production scheduling</topic><topic>Scheduling algorithms</topic><topic>Scheduling, sequencing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, I. K.</creatorcontrib><creatorcontrib>Cha, B. C.</creatorcontrib><creatorcontrib>Bae, H. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, I. K.</au><au>Cha, B. C.</au><au>Bae, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid genetic algorithm for group technology economic lot scheduling problem</atitle><jtitle>International journal of production research</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>44</volume><issue>21</issue><spage>4551</spage><epage>4568</epage><pages>4551-4568</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>The concept of group technology has been successfully applied to many production systems, including flexible manufacturing systems. In this paper we apply group technology principles to the economic lot scheduling problem, which has been studied for over 40 years. We develop a heuristic algorithm and a hybrid genetic algorithm for the group technology economic lot scheduling problem. Numerical experiments show that the developed algorithms outperform the existing heuristics.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540500534405</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2006-11, Vol.44 (21), p.4551-4568
issn 0020-7543
1366-588X
language eng
recordid cdi_pascalfrancis_primary_18109981
source EBSCOhost Business Source Complete; Taylor & Francis Journals Complete
subjects Applied sciences
Economic lot scheduling problem
Exact sciences and technology
Genetic algorithm
Genetic algorithms
Group technology
Heuristic
Operational research and scientific management
Operational research. Management science
Production scheduling
Scheduling algorithms
Scheduling, sequencing
Studies
title Hybrid genetic algorithm for group technology economic lot scheduling problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20genetic%20algorithm%20for%20group%20technology%20economic%20lot%20scheduling%20problem&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Moon,%20I.%20K.&rft.date=2006-11-01&rft.volume=44&rft.issue=21&rft.spage=4551&rft.epage=4568&rft.pages=4551-4568&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540500534405&rft_dat=%3Cproquest_pasca%3E1161194271%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218652911&rft_id=info:pmid/&rfr_iscdi=true