The use of curl-conforming basis functions for the magnetic-field integral equation
Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2006-07, Vol.54 (7), p.1917-1926 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1926 |
---|---|
container_issue | 7 |
container_start_page | 1917 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 54 |
creator | Ergul, Ozgur Gurel, Levent |
description | Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions. |
doi_str_mv | 10.1109/TAP.2006.877159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17935998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1650389</ieee_id><sourcerecordid>2544128671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbq2YOXRRBP2-Zjs0mOpfgFBQV78Bay2aSm7CZtsnvw35tSoeBpMuSZYXgBuEVwhhAU8_XiY4YhrGecMUTFGZggSnmJMUbnYAIh4qXA9dcluEppm9uKV9UEfK6_TTEmUwRb6DF2pQ7ehtg7vykalVwq7Oj14ILPrxCLIfNebbwZnC6tM11bOD-YTVRdYfajOshrcGFVl8zNX52C9fPTevlart5f3paLVamJQENJLGYcMt22lDV1QyCCrcCNxoQiKxpDaK1oloJRLJggTKuKVtQy21BCLZmCx-PaXQz70aRB9i5p03XKmzAmybmoEK1rkeX9P7kNY_T5NikQRgTXmGY0PyIdQ0rRWLmLrlfxRyIoDwnLnLA8JCyPCeeJh7-1KmnV2ai8duk0lm-mQvDs7o7OGWNO3zWFhAvyC6q8gxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912132625</pqid></control><display><type>article</type><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><source>IEEE Electronic Library (IEL)</source><creator>Ergul, Ozgur ; Gurel, Levent</creator><creatorcontrib>Ergul, Ozgur ; Gurel, Levent</creatorcontrib><description>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2006.877159</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied classical electromagnetism ; Conduction ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fast multipole method ; Fundamental areas of phenomenology (including applications) ; Geometry ; Integral equations ; magnetic-field integral equation (MFIE) ; Mathematical model ; Mathematical models ; Method of moments ; method of moments (MoM) ; Modelling ; Multilevel ; Multipoles ; Physics ; Surface impedance ; Testing</subject><ispartof>IEEE transactions on antennas and propagation, 2006-07, Vol.54 (7), p.1917-1926</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</citedby><cites>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1650389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1650389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17935998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ergul, Ozgur</creatorcontrib><creatorcontrib>Gurel, Levent</creatorcontrib><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</description><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Conduction</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fast multipole method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>magnetic-field integral equation (MFIE)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Modelling</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>Physics</subject><subject>Surface impedance</subject><subject>Testing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuAgCtbq2YOXRRBP2-Zjs0mOpfgFBQV78Bay2aSm7CZtsnvw35tSoeBpMuSZYXgBuEVwhhAU8_XiY4YhrGecMUTFGZggSnmJMUbnYAIh4qXA9dcluEppm9uKV9UEfK6_TTEmUwRb6DF2pQ7ehtg7vykalVwq7Oj14ILPrxCLIfNebbwZnC6tM11bOD-YTVRdYfajOshrcGFVl8zNX52C9fPTevlart5f3paLVamJQENJLGYcMt22lDV1QyCCrcCNxoQiKxpDaK1oloJRLJggTKuKVtQy21BCLZmCx-PaXQz70aRB9i5p03XKmzAmybmoEK1rkeX9P7kNY_T5NikQRgTXmGY0PyIdQ0rRWLmLrlfxRyIoDwnLnLA8JCyPCeeJh7-1KmnV2ai8duk0lm-mQvDs7o7OGWNO3zWFhAvyC6q8gxc</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Ergul, Ozgur</creator><creator>Gurel, Levent</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><author>Ergul, Ozgur ; Gurel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Conduction</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fast multipole method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>magnetic-field integral equation (MFIE)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Modelling</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>Physics</topic><topic>Surface impedance</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergul, Ozgur</creatorcontrib><creatorcontrib>Gurel, Levent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ergul, Ozgur</au><au>Gurel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of curl-conforming basis functions for the magnetic-field integral equation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>54</volume><issue>7</issue><spage>1917</spage><epage>1926</epage><pages>1917-1926</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2006.877159</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2006-07, Vol.54 (7), p.1917-1926 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_pascalfrancis_primary_17935998 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Applied classical electromagnetism Conduction Electromagnetism electron and ion optics Exact sciences and technology Fast multipole method Fundamental areas of phenomenology (including applications) Geometry Integral equations magnetic-field integral equation (MFIE) Mathematical model Mathematical models Method of moments method of moments (MoM) Modelling Multilevel Multipoles Physics Surface impedance Testing |
title | The use of curl-conforming basis functions for the magnetic-field integral equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20curl-conforming%20basis%20functions%20for%20the%20magnetic-field%20integral%20equation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ergul,%20Ozgur&rft.date=2006-07-01&rft.volume=54&rft.issue=7&rft.spage=1917&rft.epage=1926&rft.pages=1917-1926&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2006.877159&rft_dat=%3Cproquest_RIE%3E2544128671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912132625&rft_id=info:pmid/&rft_ieee_id=1650389&rfr_iscdi=true |