The use of curl-conforming basis functions for the magnetic-field integral equation

Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2006-07, Vol.54 (7), p.1917-1926
Hauptverfasser: Ergul, Ozgur, Gurel, Levent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1926
container_issue 7
container_start_page 1917
container_title IEEE transactions on antennas and propagation
container_volume 54
creator Ergul, Ozgur
Gurel, Levent
description Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.
doi_str_mv 10.1109/TAP.2006.877159
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17935998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1650389</ieee_id><sourcerecordid>2544128671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbq2YOXRRBP2-Zjs0mOpfgFBQV78Bay2aSm7CZtsnvw35tSoeBpMuSZYXgBuEVwhhAU8_XiY4YhrGecMUTFGZggSnmJMUbnYAIh4qXA9dcluEppm9uKV9UEfK6_TTEmUwRb6DF2pQ7ehtg7vykalVwq7Oj14ILPrxCLIfNebbwZnC6tM11bOD-YTVRdYfajOshrcGFVl8zNX52C9fPTevlart5f3paLVamJQENJLGYcMt22lDV1QyCCrcCNxoQiKxpDaK1oloJRLJggTKuKVtQy21BCLZmCx-PaXQz70aRB9i5p03XKmzAmybmoEK1rkeX9P7kNY_T5NikQRgTXmGY0PyIdQ0rRWLmLrlfxRyIoDwnLnLA8JCyPCeeJh7-1KmnV2ai8duk0lm-mQvDs7o7OGWNO3zWFhAvyC6q8gxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912132625</pqid></control><display><type>article</type><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><source>IEEE Electronic Library (IEL)</source><creator>Ergul, Ozgur ; Gurel, Levent</creator><creatorcontrib>Ergul, Ozgur ; Gurel, Levent</creatorcontrib><description>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2006.877159</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied classical electromagnetism ; Conduction ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fast multipole method ; Fundamental areas of phenomenology (including applications) ; Geometry ; Integral equations ; magnetic-field integral equation (MFIE) ; Mathematical model ; Mathematical models ; Method of moments ; method of moments (MoM) ; Modelling ; Multilevel ; Multipoles ; Physics ; Surface impedance ; Testing</subject><ispartof>IEEE transactions on antennas and propagation, 2006-07, Vol.54 (7), p.1917-1926</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</citedby><cites>FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1650389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1650389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17935998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ergul, Ozgur</creatorcontrib><creatorcontrib>Gurel, Levent</creatorcontrib><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</description><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Conduction</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fast multipole method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>magnetic-field integral equation (MFIE)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Modelling</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>Physics</subject><subject>Surface impedance</subject><subject>Testing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuAgCtbq2YOXRRBP2-Zjs0mOpfgFBQV78Bay2aSm7CZtsnvw35tSoeBpMuSZYXgBuEVwhhAU8_XiY4YhrGecMUTFGZggSnmJMUbnYAIh4qXA9dcluEppm9uKV9UEfK6_TTEmUwRb6DF2pQ7ehtg7vykalVwq7Oj14ILPrxCLIfNebbwZnC6tM11bOD-YTVRdYfajOshrcGFVl8zNX52C9fPTevlart5f3paLVamJQENJLGYcMt22lDV1QyCCrcCNxoQiKxpDaK1oloJRLJggTKuKVtQy21BCLZmCx-PaXQz70aRB9i5p03XKmzAmybmoEK1rkeX9P7kNY_T5NikQRgTXmGY0PyIdQ0rRWLmLrlfxRyIoDwnLnLA8JCyPCeeJh7-1KmnV2ai8duk0lm-mQvDs7o7OGWNO3zWFhAvyC6q8gxc</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Ergul, Ozgur</creator><creator>Gurel, Levent</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>The use of curl-conforming basis functions for the magnetic-field integral equation</title><author>Ergul, Ozgur ; Gurel, Levent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3f27807cdd57b6b3010d92bc2351f9be356a5391975297937ca4545f7fb535f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Conduction</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fast multipole method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>magnetic-field integral equation (MFIE)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Modelling</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>Physics</topic><topic>Surface impedance</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergul, Ozgur</creatorcontrib><creatorcontrib>Gurel, Levent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ergul, Ozgur</au><au>Gurel, Levent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of curl-conforming basis functions for the magnetic-field integral equation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>54</volume><issue>7</issue><spage>1917</spage><epage>1926</epage><pages>1917-1926</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n~×RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n~×RWG functions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2006.877159</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2006-07, Vol.54 (7), p.1917-1926
issn 0018-926X
1558-2221
language eng
recordid cdi_pascalfrancis_primary_17935998
source IEEE Electronic Library (IEL)
subjects Antennas
Applied classical electromagnetism
Conduction
Electromagnetism
electron and ion optics
Exact sciences and technology
Fast multipole method
Fundamental areas of phenomenology (including applications)
Geometry
Integral equations
magnetic-field integral equation (MFIE)
Mathematical model
Mathematical models
Method of moments
method of moments (MoM)
Modelling
Multilevel
Multipoles
Physics
Surface impedance
Testing
title The use of curl-conforming basis functions for the magnetic-field integral equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20curl-conforming%20basis%20functions%20for%20the%20magnetic-field%20integral%20equation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ergul,%20Ozgur&rft.date=2006-07-01&rft.volume=54&rft.issue=7&rft.spage=1917&rft.epage=1926&rft.pages=1917-1926&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2006.877159&rft_dat=%3Cproquest_RIE%3E2544128671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912132625&rft_id=info:pmid/&rft_ieee_id=1650389&rfr_iscdi=true