Directionlets: anisotropic multidirectional representation with separable filtering
In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2006-07, Vol.15 (7), p.1916-1933 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1933 |
---|---|
container_issue | 7 |
container_start_page | 1916 |
container_title | IEEE transactions on image processing |
container_volume | 15 |
creator | Velisavljevic, V. Beferull-Lozano, B. Vetterli, M. Dragotti, P.L. |
description | In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity. |
doi_str_mv | 10.1109/TIP.2006.877076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17891975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643699</ieee_id><sourcerecordid>27997345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgiruunj0I0gjqaWYrnU4q8Sbr18KCgus5pNPVmiXT3SZpxH9vhhlZ8aCnJJUnRZGXsccctpyDOb--_LRtAdRWIwKqO-yUm45vALr2bt2DxA3yzpywBznfAPBOcnWfnXClBRjenrLPb0IiX8I8RSr5VeOmkOeS5iX4ZrfGEobf9y42iZZEmabi9oXmRyjfmkyLS66P1IwhFkph-vqQ3RtdzPTouJ6xL-_eXl982Fx9fH958fpq4ztUpQ6m-3EkTihIAwG1QreeYJDDUA-aeO-lHJ02vW7N0HEzaC-FGQSCVNKJM_by0HdJ8_eVcrG7kD3F6Caa12wNoJEKhKjyxT-l0koAavgvbNEYFJ2s8Nlf8GZeU_2kbLVCIRE1r-j8gHyac0402iWFnUs_LQe7z8_W_Ow-P3vIr754emy79jsabv0xsAqeH4HL3sUxucmHfOtQG25wP9-TgwtE9EebTihjxC-Rhawi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867357781</pqid></control><display><type>article</type><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</creator><creatorcontrib>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</creatorcontrib><description>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.877076</identifier><identifier>PMID: 16830912</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic magnetoresistance ; Anisotropy ; Applied sciences ; Basis functions ; Channel bank filters ; Computer Graphics ; Computer Simulation ; Detection, estimation, filtering, equalization, prediction ; Directional vanishing moments ; directionlets ; Exact sciences and technology ; Filter bank ; filter banks ; Filtering ; Filtration ; Filtration - methods ; Geometry ; Image coding ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Miscellaneous ; Models, Statistical ; multidirection ; multiresolution ; Numerical Analysis, Computer-Assisted ; Representations ; separable filtering ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; sparse image representation ; Stochastic Processes ; Studies ; Telecommunications and information theory ; Transforms ; Visual perception ; Wavelet transforms ; wavelets</subject><ispartof>IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1916-1933</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</citedby><cites>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17891975$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16830912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velisavljevic, V.</creatorcontrib><creatorcontrib>Beferull-Lozano, B.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><creatorcontrib>Dragotti, P.L.</creatorcontrib><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</description><subject>Algorithms</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Basis functions</subject><subject>Channel bank filters</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Directional vanishing moments</subject><subject>directionlets</subject><subject>Exact sciences and technology</subject><subject>Filter bank</subject><subject>filter banks</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>Geometry</subject><subject>Image coding</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Models, Statistical</subject><subject>multidirection</subject><subject>multiresolution</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Representations</subject><subject>separable filtering</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>sparse image representation</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>Visual perception</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U2LFDEQBuAgiruunj0I0gjqaWYrnU4q8Sbr18KCgus5pNPVmiXT3SZpxH9vhhlZ8aCnJJUnRZGXsccctpyDOb--_LRtAdRWIwKqO-yUm45vALr2bt2DxA3yzpywBznfAPBOcnWfnXClBRjenrLPb0IiX8I8RSr5VeOmkOeS5iX4ZrfGEobf9y42iZZEmabi9oXmRyjfmkyLS66P1IwhFkph-vqQ3RtdzPTouJ6xL-_eXl982Fx9fH958fpq4ztUpQ6m-3EkTihIAwG1QreeYJDDUA-aeO-lHJ02vW7N0HEzaC-FGQSCVNKJM_by0HdJ8_eVcrG7kD3F6Caa12wNoJEKhKjyxT-l0koAavgvbNEYFJ2s8Nlf8GZeU_2kbLVCIRE1r-j8gHyac0402iWFnUs_LQe7z8_W_Ow-P3vIr754emy79jsabv0xsAqeH4HL3sUxucmHfOtQG25wP9-TgwtE9EebTihjxC-Rhawi</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Velisavljevic, V.</creator><creator>Beferull-Lozano, B.</creator><creator>Vetterli, M.</creator><creator>Dragotti, P.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><author>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Basis functions</topic><topic>Channel bank filters</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Directional vanishing moments</topic><topic>directionlets</topic><topic>Exact sciences and technology</topic><topic>Filter bank</topic><topic>filter banks</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>Geometry</topic><topic>Image coding</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Models, Statistical</topic><topic>multidirection</topic><topic>multiresolution</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Representations</topic><topic>separable filtering</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>sparse image representation</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>Visual perception</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velisavljevic, V.</creatorcontrib><creatorcontrib>Beferull-Lozano, B.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><creatorcontrib>Dragotti, P.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Velisavljevic, V.</au><au>Beferull-Lozano, B.</au><au>Vetterli, M.</au><au>Dragotti, P.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directionlets: anisotropic multidirectional representation with separable filtering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>15</volume><issue>7</issue><spage>1916</spage><epage>1933</epage><pages>1916-1933</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16830912</pmid><doi>10.1109/TIP.2006.877076</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1916-1933 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_17891975 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anisotropic magnetoresistance Anisotropy Applied sciences Basis functions Channel bank filters Computer Graphics Computer Simulation Detection, estimation, filtering, equalization, prediction Directional vanishing moments directionlets Exact sciences and technology Filter bank filter banks Filtering Filtration Filtration - methods Geometry Image coding Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image reconstruction Information Storage and Retrieval - methods Information, signal and communications theory Miscellaneous Models, Statistical multidirection multiresolution Numerical Analysis, Computer-Assisted Representations separable filtering Signal and communications theory Signal processing Signal Processing, Computer-Assisted Signal representation. Spectral analysis Signal, noise sparse image representation Stochastic Processes Studies Telecommunications and information theory Transforms Visual perception Wavelet transforms wavelets |
title | Directionlets: anisotropic multidirectional representation with separable filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directionlets:%20anisotropic%20multidirectional%20representation%20with%20separable%20filtering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Velisavljevic,%20V.&rft.date=2006-07-01&rft.volume=15&rft.issue=7&rft.spage=1916&rft.epage=1933&rft.pages=1916-1933&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.877076&rft_dat=%3Cproquest_RIE%3E27997345%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867357781&rft_id=info:pmid/16830912&rft_ieee_id=1643699&rfr_iscdi=true |