Directionlets: anisotropic multidirectional representation with separable filtering

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-07, Vol.15 (7), p.1916-1933
Hauptverfasser: Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1933
container_issue 7
container_start_page 1916
container_title IEEE transactions on image processing
container_volume 15
creator Velisavljevic, V.
Beferull-Lozano, B.
Vetterli, M.
Dragotti, P.L.
description In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.
doi_str_mv 10.1109/TIP.2006.877076
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17891975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643699</ieee_id><sourcerecordid>27997345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</originalsourceid><addsrcrecordid>eNqF0U2LFDEQBuAgiruunj0I0gjqaWYrnU4q8Sbr18KCgus5pNPVmiXT3SZpxH9vhhlZ8aCnJJUnRZGXsccctpyDOb--_LRtAdRWIwKqO-yUm45vALr2bt2DxA3yzpywBznfAPBOcnWfnXClBRjenrLPb0IiX8I8RSr5VeOmkOeS5iX4ZrfGEobf9y42iZZEmabi9oXmRyjfmkyLS66P1IwhFkph-vqQ3RtdzPTouJ6xL-_eXl982Fx9fH958fpq4ztUpQ6m-3EkTihIAwG1QreeYJDDUA-aeO-lHJ02vW7N0HEzaC-FGQSCVNKJM_by0HdJ8_eVcrG7kD3F6Caa12wNoJEKhKjyxT-l0koAavgvbNEYFJ2s8Nlf8GZeU_2kbLVCIRE1r-j8gHyac0402iWFnUs_LQe7z8_W_Ow-P3vIr754emy79jsabv0xsAqeH4HL3sUxucmHfOtQG25wP9-TgwtE9EebTihjxC-Rhawi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867357781</pqid></control><display><type>article</type><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</creator><creatorcontrib>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</creatorcontrib><description>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.877076</identifier><identifier>PMID: 16830912</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic magnetoresistance ; Anisotropy ; Applied sciences ; Basis functions ; Channel bank filters ; Computer Graphics ; Computer Simulation ; Detection, estimation, filtering, equalization, prediction ; Directional vanishing moments ; directionlets ; Exact sciences and technology ; Filter bank ; filter banks ; Filtering ; Filtration ; Filtration - methods ; Geometry ; Image coding ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Miscellaneous ; Models, Statistical ; multidirection ; multiresolution ; Numerical Analysis, Computer-Assisted ; Representations ; separable filtering ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal representation. Spectral analysis ; Signal, noise ; sparse image representation ; Stochastic Processes ; Studies ; Telecommunications and information theory ; Transforms ; Visual perception ; Wavelet transforms ; wavelets</subject><ispartof>IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1916-1933</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</citedby><cites>FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17891975$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16830912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velisavljevic, V.</creatorcontrib><creatorcontrib>Beferull-Lozano, B.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><creatorcontrib>Dragotti, P.L.</creatorcontrib><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</description><subject>Algorithms</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Basis functions</subject><subject>Channel bank filters</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Directional vanishing moments</subject><subject>directionlets</subject><subject>Exact sciences and technology</subject><subject>Filter bank</subject><subject>filter banks</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>Geometry</subject><subject>Image coding</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Models, Statistical</subject><subject>multidirection</subject><subject>multiresolution</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Representations</subject><subject>separable filtering</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>sparse image representation</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>Visual perception</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U2LFDEQBuAgiruunj0I0gjqaWYrnU4q8Sbr18KCgus5pNPVmiXT3SZpxH9vhhlZ8aCnJJUnRZGXsccctpyDOb--_LRtAdRWIwKqO-yUm45vALr2bt2DxA3yzpywBznfAPBOcnWfnXClBRjenrLPb0IiX8I8RSr5VeOmkOeS5iX4ZrfGEobf9y42iZZEmabi9oXmRyjfmkyLS66P1IwhFkph-vqQ3RtdzPTouJ6xL-_eXl982Fx9fH958fpq4ztUpQ6m-3EkTihIAwG1QreeYJDDUA-aeO-lHJ02vW7N0HEzaC-FGQSCVNKJM_by0HdJ8_eVcrG7kD3F6Caa12wNoJEKhKjyxT-l0koAavgvbNEYFJ2s8Nlf8GZeU_2kbLVCIRE1r-j8gHyac0402iWFnUs_LQe7z8_W_Ow-P3vIr754emy79jsabv0xsAqeH4HL3sUxucmHfOtQG25wP9-TgwtE9EebTihjxC-Rhawi</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Velisavljevic, V.</creator><creator>Beferull-Lozano, B.</creator><creator>Vetterli, M.</creator><creator>Dragotti, P.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060701</creationdate><title>Directionlets: anisotropic multidirectional representation with separable filtering</title><author>Velisavljevic, V. ; Beferull-Lozano, B. ; Vetterli, M. ; Dragotti, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-718bffe1e73e80e0e2382ce0d5dd0e28e1bc55fa89b829d419d8c539d370565a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Basis functions</topic><topic>Channel bank filters</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Directional vanishing moments</topic><topic>directionlets</topic><topic>Exact sciences and technology</topic><topic>Filter bank</topic><topic>filter banks</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>Geometry</topic><topic>Image coding</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Models, Statistical</topic><topic>multidirection</topic><topic>multiresolution</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Representations</topic><topic>separable filtering</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>sparse image representation</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>Visual perception</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velisavljevic, V.</creatorcontrib><creatorcontrib>Beferull-Lozano, B.</creatorcontrib><creatorcontrib>Vetterli, M.</creatorcontrib><creatorcontrib>Dragotti, P.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Velisavljevic, V.</au><au>Beferull-Lozano, B.</au><au>Vetterli, M.</au><au>Dragotti, P.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directionlets: anisotropic multidirectional representation with separable filtering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>15</volume><issue>7</issue><spage>1916</spage><epage>1933</epage><pages>1916-1933</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16830912</pmid><doi>10.1109/TIP.2006.877076</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-07, Vol.15 (7), p.1916-1933
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_17891975
source IEEE Electronic Library (IEL)
subjects Algorithms
Anisotropic magnetoresistance
Anisotropy
Applied sciences
Basis functions
Channel bank filters
Computer Graphics
Computer Simulation
Detection, estimation, filtering, equalization, prediction
Directional vanishing moments
directionlets
Exact sciences and technology
Filter bank
filter banks
Filtering
Filtration
Filtration - methods
Geometry
Image coding
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Information Storage and Retrieval - methods
Information, signal and communications theory
Miscellaneous
Models, Statistical
multidirection
multiresolution
Numerical Analysis, Computer-Assisted
Representations
separable filtering
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal representation. Spectral analysis
Signal, noise
sparse image representation
Stochastic Processes
Studies
Telecommunications and information theory
Transforms
Visual perception
Wavelet transforms
wavelets
title Directionlets: anisotropic multidirectional representation with separable filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directionlets:%20anisotropic%20multidirectional%20representation%20with%20separable%20filtering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Velisavljevic,%20V.&rft.date=2006-07-01&rft.volume=15&rft.issue=7&rft.spage=1916&rft.epage=1933&rft.pages=1916-1933&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.877076&rft_dat=%3Cproquest_RIE%3E27997345%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867357781&rft_id=info:pmid/16830912&rft_ieee_id=1643699&rfr_iscdi=true